Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 1-2, Pages 75–84
DOI: https://doi.org/10.1134/S156035471301005X
(Mi rcd96)
 

This article is cited in 29 scientific papers (total in 29 papers)

On the Optimal Shape of Magnetic Swimmers

Hermes Gadêlha

Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
Citations (29)
References:
Abstract: Magnetic actuation of elasto-magnetic devices has long been proposed as a simple way to propel fluid and achieve locomotion in environments dominated by viscous forces. Under the action of an oscillating magnetic field, a permanent magnet, when attached to an elastic tail, is able to generate bending waves and sufficient thrust for propulsion. We study the hydrodynamical effects of the magnetic head geometry using a geometrically exact formulation for the elastic tail elastohydrodynamics.We show that the spherical head geometry fails to take full advantage of the propulsive potential from the flexible tail. Nevertheless, while elongated prolate spheroids demonstrate a superior swimming performance, this is still regulated by the nature of the imposed magnetic field. Interestingly, the highest swimming speed is observed when the magnitude of the magnetic field is weak due to delays between the orientation of the magnetic moment and the oscillating magnetic field. This allows the stored elastic energy from the deformed tail to relax during the phase lag between the imposed magnetic field and the swimmer’s magnetic moment, favouring in this way the net propulsion. In particular, this result suggests the existence of optimal magnetic actuations that are non-smooth, and even discontinuous in time, in order to fully explore the propulsive potential associated with the relaxation dynamics of periodically deformed elastic filaments.
Keywords: micro-swimmers, magnetic actuation, elastohydrodynamics and elastic filaments.
Funding agency Grant number
WYNG Foundation
H.G. acknowledges the WYNG Foundation and Trinity Hall, University of Cambridge, for financial support.
Received: 09.10.2012
Accepted: 25.01.2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: Hermes Gadêlha, “On the Optimal Shape of Magnetic Swimmers”, Regul. Chaotic Dyn., 18:1-2 (2013), 75–84
Citation in format AMSBIB
\Bibitem{Gad13}
\by Hermes Gad\^elha
\paper On the Optimal Shape of Magnetic Swimmers
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 1-2
\pages 75--84
\mathnet{http://mi.mathnet.ru/rcd96}
\crossref{https://doi.org/10.1134/S156035471301005X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3040983}
\zmath{https://zbmath.org/?q=an:1273.76461}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317623400005}
Linking options:
  • https://www.mathnet.ru/eng/rcd96
  • https://www.mathnet.ru/eng/rcd/v18/i1/p75
  • This publication is cited in the following 29 articles:
    1. Lucas Palazzolo, Mickaël Binois, Luca Berti, Laetitia Giraldi, “Parametric shape optimization of flagellated microswimmers using Bayesian techniques”, Phys. Rev. Fluids, 10:3 (2025)  crossref
    2. Mariia Dvoriashyna, Eric Lauga, “Designing optimal elastic filaments for viscous propulsion”, Soft Matter, 2025  crossref
    3. Zihan Wang, Wenjian Li, Anke Klingner, Yutao Pei, Sarthak Misra, Islam S.M. Khalil, “Magnetic control of soft microrobots near step-out frequency: Characterization and analysis”, Computational and Structural Biotechnology Journal, 25 (2024), 165  crossref
    4. Matthew T. Bryan, Methods in Molecular Biology, 2575, Gene, Drug, and Tissue Engineering, 2023, 105  crossref
    5. Ali Gürbüz, Ke Qin, Jake J. Abbott, On Shun Pak, “Elastohydrodynamic propulsion of a filament magnetically driven at both ends”, Soft Matter, 19:37 (2023), 7100  crossref
    6. Anton V. Chesnitskiy, Alexey E. Gayduk, Vladimir A. Seleznev, Victor Ya Prinz, “Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field”, Materials, 15:21 (2022), 7781  crossref
    7. Veronika Magdanz, Anke Klingner, Leon Abelmann, Islam S. M. Khalil, “IRONSperm swimming by rigid-body rotation versus transverse bending waves influenced by cell membrane charge”, J Micro-Bio Robot, 18:1-2 (2022), 49  crossref
    8. Veronika Magdanz, Anke Klingner, Leon Abelmann, Islam S. M. Khalil, 2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), 2022, 1  crossref
    9. Jacob L. Binsley, Stefano Pagliara, Feodor Y. Ogrin, “Numerical investigation of flexible Purcell-like integrated microfluidic pumps”, Journal of Applied Physics, 132:16 (2022)  crossref
    10. Qin K., Peng Zh., Chen Y., Nganguia H., Zhu L., Pak O.Sh., “Propulsion of An Elastic Filament in a Shear-Thinning Fluid”, Soft Matter, 17:14 (2021), 3829–3839  crossref  isi  scopus
    11. Binsley J.L., Martin E.L., Myers T.O., Pagliara S., Ogrin F.Y., “Microfluidic Devices Powered By Integrated Elasto-Magnetic Pumps”, Lab Chip, 20:22 (2020), 4285–4295  crossref  isi  scopus
    12. Asghar Z., Ali N., Waqas M., Javed M.A., “An Implicit Finite Difference Analysis of Magnetic Swimmers Propelling Through Non-Newtonian Liquid in a Complex Wavy Channel”, Comput. Math. Appl., 79:8 (2020), 2189–2202  crossref  mathscinet  zmath  isi  scopus
    13. Singh T.S., Yadava R.D.S., “Navigation Control of Flagellated Magnetic Microswimmer By Parametric Excitation”, J. Phys. D-Appl. Phys., 53:9 (2020), 095402  crossref  isi  scopus
    14. Hall-McNair A.L., Montenegro-Johnson T.D., Gadelha H., Smith D.J., Gallagher M.T., “Efficient Implementation of Elastohydrodynamics Via Integral Operators”, Phys. Rev. Fluids, 4:11 (2019), 113101  crossref  isi  scopus
    15. Ali N., Asghar Z., Sajid M., Beg O.A., “Biological Interactions Between Carreau Fluid and Microswimmers in a Complex Wavy Canal With Mhd Effects”, J. Braz. Soc. Mech. Sci. Eng., 41:10 (2019), UNSP 446  crossref  isi  scopus
    16. Asghar Z., Ali N., Sajid M., Beg O.A., “Magnetic Microswimmers Propelling Through Biorheological Liquid Bounded Within An Active Channel”, J. Magn. Magn. Mater., 486 (2019), UNSP 165283  crossref  isi  scopus
    17. C. Moreau, L. Giraldi, H. Gadelha, “The asymptotic coarse-graining formulation of slender-rods, bio-filaments and flagella”, J. R. Soc. Interface, 15:144 (2018), 20180235  crossref  isi  scopus
    18. I. S. M. Khalil, A. F. Tabak, Y. Hamed, M. E. Mitwally, M. Tawakol, A. Klingner, M. Sitti, “Swimming back and forth using planar flagellar propulsion at low Reynolds numbers”, Adv. Sci., 5:2 (2018), 1700461  crossref  isi  scopus
    19. T. S. Singh, R. D. S. Yadava, “Effect of tapering on elastic filament microswimming under planar body actuation”, Biomed. Phys. Eng. Express, 4:1 (2018), 015019  crossref  isi  scopus
    20. T. S. Singh, P. Singh, R. D. S. Yadava, “Effect of interfilament hydrodynamic interaction on swimming performance of two-filament microswimmers”, Soft Matter, 14:37 (2018), 7748–7758  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:167
    References:45
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025