Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 1-2, Pages 85–99
DOI: https://doi.org/10.1134/S1560354713010061
(Mi rcd97)
 

This article is cited in 17 scientific papers (total in 17 papers)

Optimal Control of Vibrationally Excited Locomotion Systems

Felix L. Chernousko, Nikolai N. Bolotnik, Tatiana Yu. Figurina

Institute for Problems in Mechanics of the Russian Academy of Sciences, pr. Vernadskogo 101-1, Moscow, 119526 Russia
Citations (17)
References:
Abstract: Optimal controls are constructed for two types of mobile systems propelling themselves due to relative oscillatory motions of their parts. The system of the first type is modelled by a rigid body (main body) to which two links are attached by revolute joints. All three bodies interact with the environment with the forces depending on the velocity of motion of these bodies relative to the environment. The system is controlled by high-frequency periodic angular oscillations of the links relative to the main body. The system of the other type consists of two bodies, one of which (the main body) interacts with the environment and with the other body (internal body), which interacts with the main body but does not interact with the environment. The system is controlled by periodic oscillations of the internal body relative to the main body. For both systems, the motions with the main body moving along a horizontal straight line are considered. Optimal control laws that maximize the average velocity of the main body are found.
Keywords: locomotion systems, biologically inspired robots, mobile robots, optimal control.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-00513
11-01-12110
Ministry of Education and Science of the Russian Federation NSh-369.2012.1.
This study was supported by the Russian Foundation for Basic Research (projects 11-01-00513 and 11-01-12110) and the Program of State Support of Leading Scientific Schools of the Russian Federation (NSh-369.2012.1).
Received: 03.09.2012
Accepted: 17.01.2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: Felix L. Chernousko, Nikolai N. Bolotnik, Tatiana Yu. Figurina, “Optimal Control of Vibrationally Excited Locomotion Systems”, Regul. Chaotic Dyn., 18:1-2 (2013), 85–99
Citation in format AMSBIB
\Bibitem{CheBolFig13}
\by Felix L. Chernousko, Nikolai N. Bolotnik, Tatiana Yu. Figurina
\paper Optimal Control of Vibrationally Excited Locomotion Systems
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 1-2
\pages 85--99
\mathnet{http://mi.mathnet.ru/rcd97}
\crossref{https://doi.org/10.1134/S1560354713010061}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3040984}
\zmath{https://zbmath.org/?q=an:1290.68115}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317623400006}
Linking options:
  • https://www.mathnet.ru/eng/rcd97
  • https://www.mathnet.ru/eng/rcd/v18/i1/p85
  • This publication is cited in the following 17 articles:
    1. Chenming Fan, John B. Thomas, Sevak Tahmasian, “Dynamic analysis of drag-based vibratory swimmers using higher-order averaging”, Journal of Vibration and Control, 2024  crossref
    2. Marat Dosaev, “Algorithm for controlling an inertioid robot with a flywheel and an unbalance in conditions of restrictions on the angular acceleration of the unbalance”, Applied Mathematical Modelling, 109 (2022), 797  crossref
    3. Yury L. Karavaev, Anton V. Klekovkin, Ivan S. Mamaev, Valentin A. Tenenev, Evgeny V. Vetchanin, “A Simple Physical Model for Control of a Propellerless Aquatic Robot”, Journal of Mechanisms and Robotics, 14:1 (2022)  crossref
    4. Tahmasian S., “Dynamic Analysis and Optimal Control of Drag-Based Vibratory Systems Using Averaging”, Nonlinear Dyn., 104:3 (2021), 2201–2217  crossref  isi  scopus
    5. Dosaev M., Samsonov V., Hwang Sh.-Sh., “Construction of Control Algorithm in the Problem of the Planar Motion of a Friction-Powered Robot With a Flywheel and An Eccentric Weight”, Appl. Math. Model., 89:2 (2021), 1517–1527  crossref  mathscinet  isi  scopus
    6. Valter Bohm, Philipp Schorr, Florian Schale, Tobias Kaufhold, Lena Zentner, Klaus Zimmermann, 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), 2021, 358  crossref
    7. Tahmasian S., Jafaryzad A., Bulzoni N.L., Staples A.E., “Dynamic Analysis and Design Optimization of a Drag-Based Vibratory Swimmer”, Fluids, 5:1 (2020), 38  crossref  isi  scopus
    8. Petr Makhmudov, Vitaliy Samsonov, Marat Dosaev, Liubov Klimina, Yuriy Vershinin, 2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB), 2020, 1  crossref
    9. Marat Dosaev, Vitaly Samsonov, Andrei Holub, Mechanisms and Machine Science, 73, Advances in Mechanism and Machine Science, 2019, 2559  crossref
    10. S. V. Semendyaev, “Solid system with two massive eccentrics on a rough plane: rotational case”, IFAC-PapersOnLine, 51:2 (2018), 884–889  crossref  isi  scopus
    11. N. Bolotnik, P. Schorr, I. Zeidis, K. Zimmermann, “Periodic locomotion of a two-body crawling system along a straight line on a rough inclined plane”, ZAMM-Z. Angew. Math. Mech., 98:11 (2018), 1930–1946  crossref  mathscinet  isi  scopus
    12. E. S. Briskin, Ya. V. Kalinin, A. V. Maloletov, N. G. Sharonov, “Mathematical modelling of mobile robot motion with propulsion device of discrete interacting with the support surface”, IFAC-PapersOnLine, 51:2 (2018), 236–241  crossref  isi  scopus
    13. S. V. Semendyaev, “Coupled dynamics of solid system with slider-crank mechanisms as internal movers on rough surface with friction”, Coupled Problems in Science and Engineering VII (Coupled Problems 2017), eds. M. Papadrakakis, E. Onate, B. Schrefler, Int. Center Numerical Methods Engineering, 2017, 185–196  isi
    14. N. Bolotnik, M. Pivovarov, I. Zeidis, K. Zimmermann, “The motion of a two-body limbless locomotor along a straight line in a resistive medium”, ZAMM Z. Angew. Math. Mech., 96:4 (2016), 429–452  crossref  mathscinet  isi  scopus
    15. Alexander V. Sakharov, “Rotation of the Body with Movable Internal Masses Around the Center of Mass on a Rough Plane”, Regul. Chaotic Dyn., 20:4 (2015), 428–440  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    16. N. Bolotnik, M. Pivovarov, I. Zeidis, K. Zimmermann, Mechanisms and Machine Science, 22, Advances on Theory and Practice of Robots and Manipulators, 2014, 141  crossref
    17. Evgeny V. Vetchanin, Ivan S. Mamaev, Valentin A. Tenenev, “The Self-propulsion of a Body with Moving Internal Masses in a Viscous Fluid”, Regul. Chaotic Dyn., 18:1-2 (2013), 100–117  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:340
    References:82
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025