Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2004, Volume 9, Issue 3, Pages 255–264
DOI: https://doi.org/10.1070/RD2004v009n03ABEH000279
(Mi rcd745)
 

This article is cited in 17 scientific papers (total in 17 papers)

Effective computations in modern dynamics

Poisson integrator for symmetric rigid bodies

H. R. Dullin

Department of Mathematical Sciences, Loughborough University, LE11 3TU, UK
Citations (17)
Abstract: We derive an explicit second order reversible Poisson integrator for symmetric rigid bodies in space (i.e. without a fixed point). The integrator is obtained by applying a splitting method to the Hamiltonian after reduction by the S1 body symmetry. In the particular case of a magnetic top in an axisymmetric magnetic field (i.e. the Levitron) this integrator preserves the two momentum integrals. The method is used to calculate the complicated boundary of stability near a linearly stable relative equilibrium of the Levitron with indefinite Hamiltonian.
Received: 30.09.2004
Bibliographic databases:
Document Type: Article
MSC: 70E15, 65P10, 37J25
Language: English
Citation: H. R. Dullin, “Poisson integrator for symmetric rigid bodies”, Regul. Chaotic Dyn., 9:3 (2004), 255–264
Citation in format AMSBIB
\Bibitem{Dul04}
\by H. R. Dullin
\paper Poisson integrator for symmetric rigid bodies
\jour Regul. Chaotic Dyn.
\yr 2004
\vol 9
\issue 3
\pages 255--264
\mathnet{http://mi.mathnet.ru/rcd745}
\crossref{https://doi.org/10.1070/RD2004v009n03ABEH000279}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2104171}
\zmath{https://zbmath.org/?q=an:1102.70004}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004RCD.....9..255D}
Linking options:
  • https://www.mathnet.ru/eng/rcd745
  • https://www.mathnet.ru/eng/rcd/v9/i3/p255
  • This publication is cited in the following 17 articles:
    1. Sean R. Dawson, Holger R. Dullin, Diana M.H. Nguyen, “The Harmonic Lagrange Top and the Confluent Heun Equation”, Regul. Chaotic Dyn., 27:4 (2022), 443–459  mathnet  crossref  mathscinet
    2. S. I. Zub, S. S. Zub, V. S. Lyashko, N. I. Lyashko, S. I. Lyashko, “Mathematical Model of Interaction of a Symmetric Top with an Axially Symmetric External Field”, Cybern Syst Anal, 53:3 (2017), 333  crossref
    3. Juergen Geiser, Multicomponent and Multiscale Systems, 2016, 153  crossref
    4. S.I. Lyashko, S.I. Zub, S.S. Zub, N.I. Lyashko, A.Yu. Chernyavskiy, “Grid and cloud computing for the modeling of the motion of a magnetized assymmetric body in an external magnetic field”, Dopov. Nac. akad. nauk Ukr., 2016, no. 9, 29  crossref
    5. Alexandre C. M. Correia, “Cassini states for black hole binaries”, Monthly Notices of the Royal Astronomical Society: Letters, 457:1 (2016), L49  crossref
    6. Jürgen Geiser, Karl Felix Lüskow, Ralf Schneider, Lecture Notes in Computer Science, 9045, Finite Difference Methods,Theory and Applications, 2015, 193  crossref
    7. Alexandre C. M. Correia, “Stellar and planetary Cassini states”, A&A, 582 (2015), A69  crossref
    8. Stanislav S. Zub, “Stable orbital motion of magnetic dipole in the field of permanent magnets”, Physica D: Nonlinear Phenomena, 275 (2014), 67  crossref
    9. Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub, “Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies”, Journal of Geometric Mechanics, 6:3 (2014), 373  crossref
    10. Jürgen Geiser, Karl Felix Lüskow, Ralf Schneider, “Levitron: multi-scale analysis of stability”, Dynamical Systems, 29:2 (2014), 208  crossref
    11. Holger R. Dullin, “Semi-global symplectic invariants of the spherical pendulum”, Journal of Differential Equations, 254:7 (2013), 2942  crossref
    12. Jürgen Geiser, “Multiscale methods for levitron problems: Theory and applications”, Computers & Structures, 122 (2013), 27  crossref
    13. Benoît Noyelles, “Expression of Cassini's third law for Callisto, and theory of its rotation”, Icarus, 202:1 (2009), 225  crossref
    14. Roman Kozlov, “High-order conservative discretizations for some cases of the rigid body motion”, Physics Letters A, 373:1 (2008), 23  crossref
    15. Keiko M. Aoki, “Symplectic Integrators Designed for Simulating Soft Matter”, J. Phys. Soc. Jpn., 77:4 (2008), 044003  crossref
    16. Phani Kumar V. V. Nukala, William Shelton Jr, “Semi‐implicit reversible algorithms for rigid body rotational dynamics”, Numerical Meth Engineering, 69:12 (2007), 2636  crossref
    17. G. Boué, J. Laskar, “Precession of a planet with a satellite”, Icarus, 185:2 (2006), 312  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:104
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025