Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2004, Volume 9, Issue 3, Pages 227–253
DOI: https://doi.org/10.1070/RD2004v009n03ABEH000278
(Mi rcd744)
 

This article is cited in 15 scientific papers (total in 15 papers)

Effective computations in modern dynamics

On the break-down threshold of invariant tori in four dimensional maps

A. Cellettia, C. Falcolinib, U. Locatellia

a Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma (Italy)
b Dipartimento di Matematica, Università di Roma Tre, Largo S. L. Murialdo 1, I-00146 Roma (Italy)
Citations (15)
Abstract: We investigate the break-down of invariant tori in a four dimensional standard mapping for different values of the coupling parameter. We select various two-dimensional frequency vectors, having eventually one or both components close to a rational value. The dynamics of this model is very reach and depends on two parameters, the perturbing and coupling parameters. Several techniques are introduced to determine the analyticity domain (in the complex perturbing parameter plane) and to compute the break-down threshold of the invariant tori. In particular, the analyticity domain is recovered by means of a suitable implementation of Padé approximants. The break-down threshold is computed through a suitable extension of Greene's method to four dimensional systems. Frequency analysis is implemented and compared with the previous techniques.
Received: 27.09.2004
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. Celletti, C. Falcolini, U. Locatelli, “On the break-down threshold of invariant tori in four dimensional maps”, Regul. Chaotic Dyn., 9:3 (2004), 227–253
Citation in format AMSBIB
\Bibitem{CelFalLoc04}
\by A.~Celletti, C.~Falcolini, U.~Locatelli
\paper On the break-down threshold of invariant tori in four dimensional maps
\jour Regul. Chaotic Dyn.
\yr 2004
\vol 9
\issue 3
\pages 227--253
\mathnet{http://mi.mathnet.ru/rcd744}
\crossref{https://doi.org/10.1070/RD2004v009n03ABEH000278}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2104170}
\zmath{https://zbmath.org/?q=an:1102.70011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004RCD.....9..227C}
Linking options:
  • https://www.mathnet.ru/eng/rcd744
  • https://www.mathnet.ru/eng/rcd/v9/i3/p227
  • This publication is cited in the following 15 articles:
    1. Adrián P. Bustamante, “Computation of domains of analyticity of lower dimensional tori in a weakly dissipative Froeschlé map”, Communications in Nonlinear Science and Numerical Simulation, 142 (2025), 108538  crossref
    2. Adrian P. Bustamante, Alessandra Celletti, Christoph Lhotka, “Breakdown of rotational tori in 2D and 4D conservative and dissipative standard maps”, Physica D: Nonlinear Phenomena, 453 (2023), 133790  crossref
    3. Alessandra Celletti, Joan Gimeno, Mauricio Misquero, “The Spin–Spin Problem in Celestial Mechanics”, J Nonlinear Sci, 32:6 (2022)  crossref
    4. Stoeber J., Baecker A., “Geometry of Complex Instability and Escape in Four-Dimensional Symplectic Maps”, Phys. Rev. E, 103:4 (2021), 042208  crossref  mathscinet  isi  scopus
    5. Sander E., Meiss J.D., “Birkhoff Averages and Rotational Invariant Circles For Area-Preserving Maps”, Physica D, 411 (2020), 132569  crossref  mathscinet  isi  scopus
    6. Antonio Giorgilli, Ugo Locatelli, Marco Sansottera, “Secular Dynamics of a Planar Model of the Sun-Jupiter-Saturn-Uranus System; Effective Stability in the Light of Kolmogorov and Nekhoroshev Theories”, Regul. Chaotic Dyn., 22:1 (2017), 54–77  mathnet  crossref
    7. J.-Ll. Figueras, A. Haro, A. Luque, “Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach”, Found Comput Math, 17:5 (2017), 1123  crossref
    8. J. D. Meiss, “Thirty years of turnstiles and transport”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25:9 (2015)  crossref
    9. Renato C. Calleja, Alessandra Celletti, Corrado Falcolini, Rafael de la Llave, “An Extension of Greene's Criterion for Conformally Symplectic Systems and a Partial Justification”, SIAM J. Math. Anal., 46:4 (2014), 2350  crossref
    10. Timothy Blass, Rafael de la Llave, “The Analyticity Breakdown for Frenkel-Kontorova Models in Quasi-periodic Media: Numerical Explorations”, J Stat Phys, 150:6 (2013), 1183  crossref
    11. Adam M. Fox, James D. Meiss, “Greene's residue criterion for the breakup of invariant tori of volume-preserving maps”, Physica D: Nonlinear Phenomena, 243:1 (2013), 45  crossref
    12. Alessandra Celletti, “Some Aspects of Conservative and Dissipative KAM Theorems”, Milan J. Math., 80:1 (2012), 25  crossref
    13. J.D. Meiss, “The destruction of tori in volume-preserving maps”, Communications in Nonlinear Science and Numerical Simulation, 17:5 (2012), 2108  crossref
    14. Gemma Huguet, Rafael de la Llave, Yannick Sire, “Computation of whiskered invariant tori and their associated manifolds: New fast algorithms”, Discrete & Continuous Dynamical Systems - A, 32:4 (2012), 1309  crossref
    15. Alessandra Celletti, Lecture Notes in Physics, 729, Topics in Gravitational Dynamics, 2007, 67  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:129
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025