Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2004, Volume 9, Issue 3, Pages 265–279
DOI: https://doi.org/10.1070/RD2004v009n03ABEH000280
(Mi rcd746)
 

This article is cited in 43 scientific papers (total in 43 papers)

Effective computations in modern dynamics

Two-body problem on a sphere. Reduction, stochasticity, periodic orbits

A. V. Borisov, I. S. Mamaev, A. A. Kilin

Institute of Computer Science, Udmurt State University, Universitetskaya, 1, 426034, Izhevsk, Russia
Citations (43)
Abstract: We consider the problem of two interacting particles on a sphere. The potential of the interaction depends on the distance between the particles. The case of Newtonian-type potentials is studied in most detail. We reduce this system to a system with two degrees of freedom and give a number of remarkable periodic orbits. We also discuss integrability and stochastization of the motion.
Received: 25.06.2004
Bibliographic databases:
Document Type: Article
MSC: 37N05, 70F10
Language: English
Citation: A. V. Borisov, I. S. Mamaev, A. A. Kilin, “Two-body problem on a sphere. Reduction, stochasticity, periodic orbits”, Regul. Chaotic Dyn., 9:3 (2004), 265–279
Citation in format AMSBIB
\Bibitem{BorMamKil04}
\by A. V. Borisov, I. S. Mamaev, A. A. Kilin
\paper Two-body problem on a sphere. Reduction, stochasticity, periodic orbits
\jour Regul. Chaotic Dyn.
\yr 2004
\vol 9
\issue 3
\pages 265--279
\mathnet{http://mi.mathnet.ru/rcd746}
\crossref{https://doi.org/10.1070/RD2004v009n03ABEH000280}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2104172}
\zmath{https://zbmath.org/?q=an:1065.37058}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004RCD.....9..265B}
Linking options:
  • https://www.mathnet.ru/eng/rcd746
  • https://www.mathnet.ru/eng/rcd/v9/i3/p265
  • This publication is cited in the following 43 articles:
    1. Rubén Darío Ortiz Ortiz, Ana Magnolia Marín Ramírez, Ismael Oviedo de Julián, “Asymptotic Antipodal Solutions as the Limit of Elliptic Relative Equilibria for the Two- and n-Body Problems in the Two-Dimensional Conformal Sphere”, Mathematics, 12:7 (2024), 1025  crossref
    2. Toshiaki Fujiwara, Ernesto Pérez-Chavela, “Mass-Independent Shapes for Relative Equilibria in the Two-Dimensional Positively Curved Three-Body Problem”, J Nonlinear Sci, 34:5 (2024)  crossref
    3. Toshiaki Fujiwara, Ernesto Pérez-Chavela, “Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem”, Regul. Chaotic Dyn., 29:6 (2024), 803–824  mathnet  crossref
    4. Shuqiang Zhu, “The Schubart Orbits in the Curved Three-Body Problem with Two Equal Masses”, J Nonlinear Sci, 34:6 (2024)  crossref
    5. Toshiaki Fujiwara, Ernesto Pérez-Chavela, “Three-Body Relative Equilibria on S2”, Regul. Chaotic Dyn., 28:4-5 (2023), 690–706  mathnet  crossref
    6. Pieter Tibboel, “Classification of positive elliptic-elliptic rotopulsators on Clifford tori”, Journal of Mathematical Analysis and Applications, 526:1 (2023), 127154  crossref
    7. Zhu Sh., “Dziobek Equilibrium Configurations on a Sphere”, J. Dyn. Differ. Equ., 34:2 (2022), 1269–1283  crossref  mathscinet  isi  scopus
    8. Carlos García-Azpeitia, Luis C. García-Naranjo, “Platonic Solids and Symmetric Solutions of the N-vortex Problem on the Sphere”, J Nonlinear Sci, 32:3 (2022)  crossref
    9. Juan Manuel Sánchez-Cerritos, Liang Ding, Jinlong Wei, “Equilibrium points in restricted problems on S2 and H2”, Journal of Mathematical Physics, 63:6 (2022)  crossref
    10. Antonio Hernández-Garduño, Ernesto Pérez-Chavela, Shuqiang Zhu, “Stability of Regular Polygonal Relative Equilibria on S2”, J Nonlinear Sci, 32:5 (2022)  crossref
    11. Juan Manuel Sánchez-Cerritos, Ernesto Pérez-Chavela, “Hyperbolic regularization of the restricted three–body problem on curved spaces”, Anal.Math.Phys., 12:1 (2022)  crossref
    12. Garcia-Naranjo L.C. Montaldi J., “Attracting and Repelling 2-Body Problems on a Family of Surfaces of Constant Curvature”, J. Dyn. Differ. Equ., 33:4 (2021), 1579–1603  crossref  isi  scopus
    13. Yu X., Zhu Sh., “Regular Polygonal Equilibria on S-1 and Stability of the Associated Relative Equilibria”, J. Dyn. Differ. Equ., 33:2 (2021), 1071–1086  crossref  mathscinet  zmath  isi  scopus
    14. Shuqiang Zhu, “Compactness and Index of Ordinary Central Configurations for the Curved N-Body Problem”, Regul. Chaotic Dyn., 26:3 (2021), 236–257  mathnet  crossref  mathscinet
    15. Nataliya A. Balabanova, James A. Montaldi, “Two-body Problem on a Sphere in the Presence of a Uniform Magnetic Field”, Regul. Chaotic Dyn., 26:4 (2021), 370–391  mathnet  crossref  mathscinet
    16. Jaime Andrade, Claudio Vidal, Claudio Sierpe, “Stability of the Relative Equilibria in the Two-body Problem on the Sphere”, Regul. Chaotic Dyn., 26:4 (2021), 402–438  mathnet  crossref  mathscinet
    17. Jackman C., “Secular Dynamics For Curved Two-Body Problems”, J. Dyn. Differ. Equ., 2021  crossref  isi  scopus
    18. Garcia-Naranjo L.C., “Some Remarks About the Centre of Mass of Two Particles in Spaces of Constant Curvature”, J. Geom. Mech., 12:3 (2020), 435–446  crossref  mathscinet  zmath  isi  scopus
    19. Tibboel P., “Results on Equality of Masses For Choreographic Solutions of N-Body Problems”, J. Math. Phys., 61:9 (2020), 092901  crossref  mathscinet  zmath  isi  scopus
    20. Sanchez-Cerritos J.M., “Local Regularization of a Restricted Problem on H-2 With Primaries on Hyperbolic Motion”, J. Geom. Phys., 157 (2020), 103806  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:174
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025