Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2004, Volume 9, Issue 3, Pages 213–226
DOI: https://doi.org/10.1070/RD2004v009n03ABEH000277
(Mi rcd743)
 

This article is cited in 34 scientific papers (total in 34 papers)

Effective computations in modern dynamics

Geometric integration via multi-space

P. Kim, P. J. Olver

Department of Mathematics, University of Minnesota, MN 55455, USA
Citations (34)
Abstract: We outline a general construction of symmetry-preserving numerical schemes for ordinary differential equations. The method of invariantization is based on the equivariant moving frame theory applied to prolonged symmetry group actions on multi-space, which has been proposed as the proper geometric setting for numerical analysis. We explain how to invariantize standard numerical integrators such as the Euler and Runge–Kutta schemes; in favorable situations, the resulting symmetry-preserving geometric integrators offer significant advantages.
Received: 20.08.2004
Bibliographic databases:
Document Type: Article
Language: English
Citation: P. Kim, P. J. Olver, “Geometric integration via multi-space”, Regul. Chaotic Dyn., 9:3 (2004), 213–226
Citation in format AMSBIB
\Bibitem{KimOlv04}
\by P.~Kim, P.~J.~Olver
\paper Geometric integration via multi-space
\jour Regul. Chaotic Dyn.
\yr 2004
\vol 9
\issue 3
\pages 213--226
\mathnet{http://mi.mathnet.ru/rcd743}
\crossref{https://doi.org/10.1070/RD2004v009n03ABEH000277}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2104169}
\zmath{https://zbmath.org/?q=an:1068.65092}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004RCD.....9..213K}
Linking options:
  • https://www.mathnet.ru/eng/rcd743
  • https://www.mathnet.ru/eng/rcd/v9/i3/p213
  • This publication is cited in the following 34 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024