|
This article is cited in 5 scientific papers (total in 5 papers)
Bicentennial of C.G. Jacobi
Integrability of generalized Jacobi problem
B. S. Bardina, A. J. Maciejewskib, M. Przybylskacd a Faculty of Applied Mathematics,
Moscow Aviation Institute,
4, Volokolamskoe Shosse,
Moscow 125871, Russia
b Institute of Astronomy,
University of Zielona Góra,
50, Podgórna, Zielona Góra PL-65-246, Poland
c Toruń Centre for Astronomy, N. Copernicus University,
11, Gagarina, Toruń; PL-87–100, Poland
d Institut Fourier, UMR 5582 du CNRS,
Université de Grenoble I,
100, rue des Maths, BP 74, 38402 Saint-Martin d'Héres, France
Abstract:
We consider a point moving in an ellipsoid a1x21+a2x22+a3x23=1 under the influence of a force with quadratic potential V=12(b1x21+b2x22+b3x23). We prove that the equations of motion of the point are meromorphically integrable if and only if the condition b1(a2−a3)+b2(a3−a1)+b3(a1−a2)=0 is fulfilled.
Keywords:
Jacobi problem, integrability, differential Galois group, monodromy group.
Received: 28.04.2005 Accepted: 26.08.2005
Citation:
B. S. Bardin, A. J. Maciejewski, M. Przybylska, “Integrability of generalized Jacobi problem”, Regul. Chaotic Dyn., 10:4 (2005), 437–461
Linking options:
https://www.mathnet.ru/eng/rcd720 https://www.mathnet.ru/eng/rcd/v10/i4/p437
|
Statistics & downloads: |
Abstract page: | 132 |
|