Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2005, Volume 10, Issue 4, Pages 423–436
DOI: https://doi.org/10.1070/RD2005v010n04ABEH000324
(Mi rcd719)
 

This article is cited in 21 scientific papers (total in 21 papers)

Bicentennial of C.G. Jacobi

A nonlinear deformation of the isotonic oscillator and the Smorodinski–Winternitz system: integrability and superintegrability

J. F. Cariñenaa, M. F. Rañadaa, M. Santanderb

a Departamento de Física Teórica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
b Departamento de Física Teórica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, Spain
Citations (21)
Abstract: The properties of a nonlinear deformation of the isotonic oscillator are studied. This deformation affects to both the kinetic term and the potential and depends on a parameter λ in such a way that for λ=0 all the characteristics of of the classical system are recovered. In the second part, that is devoted to the two-dimensional case, a λ-dependent deformation of the Smorodinski–Winternitz system is studied. It is proved that the deformation introduced by the parameter λ modifies the Hamilton–Jacobi equation but preserves the existence of a multiple separability.
Keywords: nonlinear equations, nonlinear oscillators, integrability, superintegrability, Hamilton–Jacobi separability.
Received: 24.02.2005
Accepted: 16.05.2005
Bibliographic databases:
Document Type: Article
Language: English
Citation: J. F. Cariñena, M. F. Rañada, M. Santander, “A nonlinear deformation of the isotonic oscillator and the Smorodinski–Winternitz system: integrability and superintegrability”, Regul. Chaotic Dyn., 10:4 (2005), 423–436
Citation in format AMSBIB
\Bibitem{CarRanSan05}
\by J. F. Cari\~nena, M.~F.~Ra{\~n}ada, M.~Santander
\paper A nonlinear deformation of the isotonic oscillator and the Smorodinski–Winternitz system: integrability and superintegrability
\jour Regul. Chaotic Dyn.
\yr 2005
\vol 10
\issue 4
\pages 423--436
\mathnet{http://mi.mathnet.ru/rcd719}
\crossref{https://doi.org/10.1070/RD2005v010n04ABEH000324}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2191371}
\zmath{https://zbmath.org/?q=an:1133.70326}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005RCD....10..423C}
Linking options:
  • https://www.mathnet.ru/eng/rcd719
  • https://www.mathnet.ru/eng/rcd/v10/i4/p423
  • This publication is cited in the following 21 articles:
    1. V. K. Chandrasekar, R. Gladwin Pradeep, R. Mohanasubha, M. Senthilvelan, M. Lakshmanan, “Method of deriving Lagrangian for two-dimensional systems”, Eur. Phys. J. Plus, 138:1 (2023)  crossref
    2. Mustafa O., “N-Dimensional Pdm-Damped Harmonic Oscillators: Linearizability, and Exact Solvability”, Phys. Scr., 96:6 (2021), 065205  crossref  isi  scopus
    3. Mustafa O., “Isochronous N-Dimensional Nonlinear Pdm-Oscillators: Linearizability, Invariance and Exact Solvability”, Eur. Phys. J. Plus, 136:2 (2021), 249  crossref  isi  scopus
    4. Mustafa O., “N-Dimensional Pdm Non-Linear Oscillators: Linearizability and Euler-Lagrange Or Newtonian Invariance”, Phys. Scr., 95:6 (2020), 065214  crossref  isi  scopus
    5. Mustafa O., “Pdm Creation and Annihilation Operators of the Harmonic Oscillators and the Emergence of An Alternative Pdm-Hamiltonian”, Phys. Lett. A, 384:13 (2020), 126265  crossref  mathscinet  zmath  isi  scopus
    6. Mustafa O., Algadhi Z., “Position-Dependent Mass Momentum Operator and Minimal Coupling: Point Canonical Transformation and Isospectrality”, Eur. Phys. J. Plus, 134:5 (2019), 228  crossref  isi  scopus
    7. Shahram Dehdashti, Ali Mahdifar, Huaping Wang, “Coherent States of Position-Dependent Mass Oscillator”, Int J Theor Phys, 55:8 (2016), 3564  crossref
    8. Dibakar Ghosh, Barnana Roy, “Nonlinear dynamics of classical counterpart of the generalized quantum nonlinear oscillator driven by position dependent mass”, Annals of Physics, 353 (2015), 222  crossref
    9. Omar Mustafa, “Position-dependent mass Lagrangians: nonlocal transformations, Euler–Lagrange invariance and exact solvability”, J. Phys. A: Math. Theor., 48:22 (2015), 225206  crossref
    10. Rami Ahmad El-Nabulsi, “A Generalized Nonlinear Oscillator From Non-Standard Degenerate Lagrangians and Its Consequent Hamiltonian Formalism”, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 84:4 (2014), 563  crossref
    11. Manuel F. Rañada, “A quantum quasi-harmonic nonlinear oscillator with an isotonic term”, Journal of Mathematical Physics, 55:8 (2014)  crossref
    12. R. Mohanasubha, M.I. Sabiya Shakila, M. Senthilvelan, “On the linearization of isochronous centre of a modified Emden equation with linear external forcing”, Communications in Nonlinear Science and Numerical Simulation, 19:4 (2014), 799  crossref
    13. B Midya, B Roy, A Biswas, “Coherent state of a nonlinear oscillator and its revival dynamics”, Phys. Scr., 79:6 (2009), 065003  crossref
    14. B Midya, B Roy, “A generalized quantum nonlinear oscillator”, J. Phys. A: Math. Theor., 42:28 (2009), 285301  crossref
    15. Vadas Gintautas, Alfred W. Hübler, “Resonant forcing of nonlinear systems of differential equations”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 18:3 (2008)  crossref
    16. Á. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, “A maximally superintegrable system on an -dimensional space of nonconstant curvature”, Physica D: Nonlinear Phenomena, 237:4 (2008), 505  crossref
    17. J. F. Cariñena, M. F. Rañada, M. Santander, “Quantization of a nonlinear oscillator as a model of the harmonic oscillator on spaces of constant curvature: One- and two-dimensional systems”, Phys. Atom. Nuclei, 71:5 (2008), 836  crossref
    18. José F. Cariñena, Manuel F. Rañada, Mariano Santander, “A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog”, SIGMA, 3 (2007), 030, 23 pp.  mathnet  crossref  mathscinet  zmath
    19. José F. Cariñena, Manuel F. Rañada, Mariano Santander, “A quantum exactly solvable non-linear oscillator with quasi-harmonic behaviour”, Annals of Physics, 322:2 (2007), 434  crossref
    20. J. F. Cariñena, M. F. Rañada, M. Santander, “Three superintegrable two-dimensional oscillators: Superintegrability, nonlinearity, and curvature”, Phys. Atom. Nuclei, 70:3 (2007), 505  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:101
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025