Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2005, Volume 10, Issue 4, Pages 463–485
DOI: https://doi.org/10.1070/RD2005v010n04ABEH000326
(Mi rcd721)
 

This article is cited in 4 scientific papers (total in 4 papers)

Bicentennial of C.G. Jacobi

Algebraic closed geodesics on a triaxial ellipsoid

Yu. N. Fedorovab

a Department of Mathematics and Mechanics, Moscow Lomonosov University, Moscow, 119899, Russia
b Department de Matemàtica I, Universitat Politecnica de Catalunya, Barcelona, E-08028 Spain
Citations (4)
Abstract: We propose a simple method of explicit description of families of closed geodesics on a triaxial ellipsoid Q that are cut out by algebraic surfaces in R3. Such geodesics are either connected components of real parts of spatial elliptic curves or of rational curves. Our approach is based on elements of the Weierstrass–Poncaré reduction theory for hyperelliptic tangential covers of elliptic curves, the addition law for elliptic functions, and the Moser–Trubowitz isomorphism between geodesics on a quadric and finite-gap solutions of the KdV equation. For the case of 3-fold and 4-fold coverings, some explicit formulas for the cutting algebraic surfaces are provided and some properties of the corresponding geodesics are discussed.
Keywords: closed geodesics, hyperelliptic curves, hyperelliptic coverings.
Received: 13.06.2005
Accepted: 17.10.2005
Bibliographic databases:
Document Type: Article
Language: English
Citation: Yu. N. Fedorov, “Algebraic closed geodesics on a triaxial ellipsoid”, Regul. Chaotic Dyn., 10:4 (2005), 463–485
Citation in format AMSBIB
\Bibitem{Fed05}
\by Yu. N. Fedorov
\paper Algebraic closed geodesics on a triaxial ellipsoid
\jour Regul. Chaotic Dyn.
\yr 2005
\vol 10
\issue 4
\pages 463--485
\mathnet{http://mi.mathnet.ru/rcd721}
\crossref{https://doi.org/10.1070/RD2005v010n04ABEH000326}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2191373}
\zmath{https://zbmath.org/?q=an:1133.37328}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2005RCD....10..463F}
Linking options:
  • https://www.mathnet.ru/eng/rcd721
  • https://www.mathnet.ru/eng/rcd/v10/i4/p463
  • This publication is cited in the following 4 articles:
    1. Yue Kai, “Algebraic Geodesics on Three-Dimensional Quadrics”, Zeitschrift für Naturforschung A, 70:12 (2015), 1049  crossref
    2. Pablo S. Casas, Rafael Ramírez-Ros, “Classification of symmetric periodic trajectories in ellipsoidal billiards”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22:2 (2012)  crossref
    3. Pablo S. Casas, Rafael Ramírez-Ros, “The Frequency Map for Billiards inside Ellipsoids”, SIAM J. Appl. Dyn. Syst., 10:1 (2011), 278  crossref
    4. Simonetta Abenda, Petr G. Grinevich, “Periodic billiard orbits on n-dimensional ellipsoids with impacts on confocal quadrics and isoperiodic deformations”, Journal of Geometry and Physics, 60:10 (2010), 1617  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:103
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025