Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 1, Pages 74–93
DOI: https://doi.org/10.1134/S1560354715010062
(Mi rcd62)
 

This article is cited in 35 scientific papers (total in 35 papers)

Simultaneous Separation for the Neumann and Chaplygin Systems

Andrey V. Tsiganov

St. Petersburg State University, ul. Ulyanovskaya 1, St. Petersburg, 198504, Russia
Citations (35)
References:
Abstract: The Neumann and Chaplygin systems on the sphere are simultaneously separable in variables obtained from the standard elliptic coordinates by the proper Bäcklund transformation. We also prove that after similar Bäcklund transformations other curvilinear coordinates on the sphere and on the plane become variables of separation for the system with quartic potential, for the Hénon-Heiles system and for the Kowalevski top. This allows us to speak about some analog of the hetero Bäcklund transformations relating different Hamilton–Jacobi equations.
Keywords: bi-Hamiltonian geometry, Bäcklund transformations, separation of variables.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00061
Saint Petersburg State University 11.38.664.2013
This work was partially supported by RFBR grant 13-01-00061 and SPbU grant 11.38.664.2013.
Received: 28.10.2014
Accepted: 24.11.2014
Bibliographic databases:
Document Type: Article
MSC: 37K35, 53D22, 70H06
Language: English
Citation: Andrey V. Tsiganov, “Simultaneous Separation for the Neumann and Chaplygin Systems”, Regul. Chaotic Dyn., 20:1 (2015), 74–93
Citation in format AMSBIB
\Bibitem{Tsi15}
\by Andrey V. Tsiganov
\paper Simultaneous Separation for the Neumann and Chaplygin Systems
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 1
\pages 74--93
\mathnet{http://mi.mathnet.ru/rcd62}
\crossref{https://doi.org/10.1134/S1560354715010062}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3304939}
\zmath{https://zbmath.org/?q=an:1325.37052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000349024900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944180427}
Linking options:
  • https://www.mathnet.ru/eng/rcd62
  • https://www.mathnet.ru/eng/rcd/v20/i1/p74
  • This publication is cited in the following 35 articles:
    1. Xin-Yi Gao, Yong-Jiang Guo, Wen-Rui Shan, “On the Oceanic/Laky Shallow-Water Dynamics through a Boussinesq-Burgers System”, Qual. Theory Dyn. Syst., 23:2 (2024)  crossref
    2. Xin-Yi Gao, Yong-Jiang Guo, Wen-Rui Shan, “Oceanic shallow-water symbolic computation on a (2+1)-dimensional generalized dispersive long-wave system”, Physics Letters A, 457 (2023), 128552  crossref
    3. Xin-Yi Gao, “Considering the wave processes in oceanography, acoustics and hydrodynamics by means of an extended coupled (2+1)-dimensional Burgers system”, Chinese Journal of Physics, 86 (2023), 572  crossref
    4. Andrey V. Tsiganov, “Equivalent Integrable Metrics on the Sphere with Quartic Invariants”, SIGMA, 18 (2022), 094, 19 pp.  mathnet  crossref  mathscinet
    5. A V Tsiganov, “Reducible Abelian varieties and Lax matrices for Euler's problem of two fixed centres”, Nonlinearity, 35:10 (2022), 5357  crossref
    6. Gao X.-Y., Guo Y.-J., Shan W.-R., “Symbolic Computation on a (2+1)-Dimensional Generalized Variable-Coefficient Boiti-Leon-Pempinelli System For the Water Waves”, Chaos Solitons Fractals, 150 (2021), 111066  crossref  mathscinet  isi  scopus
    7. Gao X.-Y., Guo Y.-J., Shan W.-R., “In Oceanography, Acoustics and Hydrodynamics: An Extended Coupled (2+1) -Dimensional Burgers System”, Chin. J. Phys., 70 (2021), 264–270  crossref  mathscinet  isi  scopus
    8. Gao X.-Y., Guo Y.-J., Shan W.-R., “Oceanic Studies Via a Variable-Coefficient Nonlinear Dispersive-Wave System in the Solar System”, Chaos Solitons Fractals, 142 (2021), 110367  crossref  mathscinet  isi  scopus
    9. Gao X.-Y., Guo Y.-J., Shan W.-R., “Scaling Transformations, Hetero-Backlund Transformations and Similarity Reductions on a (2+1)-Dimensional Generalized Variable-Coefficient Boiti-Leon-Pempinelli System For Water Waves”, Rom. Rep. Phys., 73:2 (2021), 111  mathscinet  isi
    10. Zhou T.-Yu., Tian B., Chen S.-S., Wei Ch.-Ch., Chen Yu.-Q., “Backlund Transformations, Lax Pair and Solutions of a Sharma-Tasso-Olver-Burgers Equation For the Nonlinear Dispersive Waves”, Mod. Phys. Lett. B, 35:35 (2021), 2150421  crossref  mathscinet  isi  scopus
    11. X.-Y. Gao, Y.-J. Guo, W.-R. Shan, “Scaling and hetero-/auto-Backlund transformations with solitons of an extended coupled (2+1)-dimensional Burgers system for the wave processes in hydrodynamics and acoustics”, Mod. Phys. Lett. B, 34:34 (2020), 2050389  crossref  mathscinet  isi  scopus
    12. X.-Y. Gao, Y.-J. Guo, W.-R. Shan, “Hetero-Backlund transformation and similarity reduction of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics”, Phys. Lett. A, 384:31 (2020), 126788  crossref  mathscinet  zmath  isi  scopus
    13. A. V. Tsiganov, “Reduction of divisors for classical superintegrable gl(3) magnetic chain”, J. Math. Phys., 61:11 (2020), 112703  crossref  mathscinet  zmath  isi  scopus
    14. A. V. Tsiganov, “Discretization and superintegrability all rolled into one”, Nonlinearity, 33:9 (2020), 4924–4939  crossref  mathscinet  zmath  isi  scopus
    15. A. V. Tsiganov, “Backlund transformations and divisor doubling”, J. Geom. Phys., 126:SI (2018), 148–158  crossref  mathscinet  zmath  isi  scopus
    16. A. V. Tsiganov, “Duffing Oscillator and Elliptic Curve Cryptography”, Nelin. Dinam., 14:2 (2018), 235–241  mathnet  crossref  elib
    17. A. V. Tsiganov, “Discretization of Hamiltonian systems and intersection theory”, Theoret. and Math. Phys., 197:3 (2018), 1806–1822  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    18. Andrey V. Tsiganov, “On Discretization of the Euler Top”, Regul. Chaotic Dyn., 23:6 (2018), 785–796  mathnet  crossref
    19. A. V. Tsiganov, “On exact discretization of cubic-quintic Duffing oscillator”, J. Math. Phys., 59:7 (2018), 072703  crossref  mathscinet  zmath  isi  scopus
    20. A. V. Tsiganov, Springer Proceedings in Mathematics & Statistics, 273, Recent Developments in Integrable Systems and Related Topics of Mathematical Physics, 2018, 47  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:278
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025