Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 1, Pages 74–93
DOI: https://doi.org/10.1134/S1560354715010062
(Mi rcd62)
 

This article is cited in 35 scientific papers (total in 35 papers)

Simultaneous Separation for the Neumann and Chaplygin Systems

Andrey V. Tsiganov

St. Petersburg State University, ul. Ulyanovskaya 1, St. Petersburg, 198504, Russia
Citations (35)
References:
Abstract: The Neumann and Chaplygin systems on the sphere are simultaneously separable in variables obtained from the standard elliptic coordinates by the proper Bäcklund transformation. We also prove that after similar Bäcklund transformations other curvilinear coordinates on the sphere and on the plane become variables of separation for the system with quartic potential, for the Hénon-Heiles system and for the Kowalevski top. This allows us to speak about some analog of the hetero Bäcklund transformations relating different Hamilton–Jacobi equations.
Keywords: bi-Hamiltonian geometry, Bäcklund transformations, separation of variables.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00061
Saint Petersburg State University 11.38.664.2013
This work was partially supported by RFBR grant 13-01-00061 and SPbU grant 11.38.664.2013.
Received: 28.10.2014
Accepted: 24.11.2014
Bibliographic databases:
Document Type: Article
MSC: 37K35, 53D22, 70H06
Language: English
Citation: Andrey V. Tsiganov, “Simultaneous Separation for the Neumann and Chaplygin Systems”, Regul. Chaotic Dyn., 20:1 (2015), 74–93
Citation in format AMSBIB
\Bibitem{Tsi15}
\by Andrey V. Tsiganov
\paper Simultaneous Separation for the Neumann and Chaplygin Systems
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 1
\pages 74--93
\mathnet{http://mi.mathnet.ru/rcd62}
\crossref{https://doi.org/10.1134/S1560354715010062}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3304939}
\zmath{https://zbmath.org/?q=an:1325.37052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000349024900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944180427}
Linking options:
  • https://www.mathnet.ru/eng/rcd62
  • https://www.mathnet.ru/eng/rcd/v20/i1/p74
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:234
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024