Processing math: 100%
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 1, Pages 94–108
DOI: https://doi.org/10.1134/S1560354715010074
(Mi rcd63)
 

This article is cited in 5 scientific papers (total in 5 papers)

A λ-lemma for Normally Hyperbolic Invariant Manifolds

Jacky Cressonab, Stephen Wigginsc

a SYRTE, UMR 8630 CNRS, Observatoire de Paris, 77 avenue Denfert-Rochereau, 75014, Paris, France
b Laboratoire de Mathématiques Appliquées de Pau, UMR CNRS 5142, Université de Pau et des Pays de l’Adour, avenue de l’Université, BP 1155, 64013, Pau Cedex, France
c School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, UK
Citations (5)
References:
Abstract: Let N be a smooth manifold and f:NN be a Cl,l2 diffeomorphism. Let M be a normally hyperbolic invariant manifold, not necessarily compact. We prove an analogue of the λ-lemma in this case. Applications of this result are given in the context of normally hyperbolic invariant annuli or cylinders which are the basic pieces of all geometric mechanisms for diffusion in Hamiltonian systems. Moreover, we construct an explicit class of three-degree-of-freedom near-integrable Hamiltonian systems which satisfy our assumptions.
Keywords: λ-lemma, Arnold diffusion, normally hyperbolic manifolds, Moeckel’s mechanism.
Funding agency Grant number
Office of Naval Research N00014-01-1-076
SW would like to acknowledge the support of ONR Grant No. N00014-01-1-0769.
Received: 28.11.2014
Accepted: 30.12.2014
Bibliographic databases:
Document Type: Article
MSC: 37-XX, 37Dxx, 37Jxx
Language: English
Citation: Jacky Cresson, Stephen Wiggins, “A λ-lemma for Normally Hyperbolic Invariant Manifolds”, Regul. Chaotic Dyn., 20:1 (2015), 94–108
Citation in format AMSBIB
\Bibitem{CreWig15}
\by Jacky Cresson, Stephen Wiggins
\paper A $\lambda$-lemma for Normally Hyperbolic Invariant Manifolds
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 1
\pages 94--108
\mathnet{http://mi.mathnet.ru/rcd63}
\crossref{https://doi.org/10.1134/S1560354715010074}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3304940}
\zmath{https://zbmath.org/?q=an:1331.37034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000349024900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944180430}
Linking options:
  • https://www.mathnet.ru/eng/rcd63
  • https://www.mathnet.ru/eng/rcd/v20/i1/p94
  • This publication is cited in the following 5 articles:
    1. Ankai Liu, Felicia Maria G. Magpantay, Kenzu Abdella, “A framework for long-lasting, slowly varying transient dynamics”, MBE, 20:7 (2023), 12130  crossref
    2. Sakamoto N., Zuazua E., “The Turnpike Property in Nonlinear Optimal Control-a Geometric Approach”, Automatica, 134 (2021), 109939  crossref  mathscinet  isi  scopus
    3. M. Velayati, “λ-lemma for nonhyperbolic point in intersection”, Electron. J. Qual. Theory Differ. Equ., 2021, no. 21, 1  crossref
    4. M. Gidea, R. Llave, M-, T. Seara, “A general mechanism of diffusion in Hamiltonian systems: qualitative results”, Commun. Pure Appl. Math., 73:1 (2020), 150–209  crossref  mathscinet  zmath  isi  scopus
    5. Teramoto H., Toda M., Takahashi M., Kono H., Komatsuzaki T., “Mechanism and Experimental Observability of Global Switching Between Reactive and Nonreactive Coordinates At High Total Energies”, Phys. Rev. Lett., 115:9 (2015), 093003  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:245
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025