Loading [MathJax]/jax/output/CommonHTML/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 1, Pages 63–73
DOI: https://doi.org/10.1134/S1560354715010050
(Mi rcd61)
 

This article is cited in 21 scientific papers (total in 21 papers)

On the Stability of a Planar Resonant Rotation of a Satellite in an Elliptic Orbit

Boris S. Bardin, Evgeniya A. Chekina, Alexander M. Chekin

Theoretical Mechanics Department, Faculty of Applied Mathematics and Physics, Moscow Aviation Institute, Volokolamskoe sh. 4, Moscow, 125871, Russia
Citations (21)
References:
Abstract: We study the Lyapunov stability problem of the resonant rotation of a rigid body satellite about its center of mass in an elliptical orbit. The resonant rotation is a planar motion such that the satellite completes one rotation in absolute space during two orbital revolutions of its center of mass. The stability analysis of the above resonance rotation was started in [4, 6]. In the present paper, rigorous stability conclusions in the previously unstudied range of parameter values are obtained. In particular, new intervals of stability are found for eccentricity values close to 1. In addition, some special cases are studied where the stability analysis should take into account terms of degree not less than six in the expansion of the Hamiltonian of the perturbed motion. Using the technique described in [7, 8], explicit formulae are obtained, allowing one to verify the stability criterion of a time-periodic Hamiltonian system with one degree of freedom in the special cases mentioned.
Keywords: Hamiltonian system, symplectic map, normal form, resonance, satellite, stability.
Funding agency Grant number
Russian Science Foundation 14-21-00068
The work was carried out under the grant of the Russian Scientific Foundation (project No 14-21-00068) at the Moscow Aviation Institute (National Research University).
Received: 26.11.2014
Accepted: 13.12.2014
Bibliographic databases:
Document Type: Article
Language: English
Citation: Boris S. Bardin, Evgeniya A. Chekina, Alexander M. Chekin, “On the Stability of a Planar Resonant Rotation of a Satellite in an Elliptic Orbit”, Regul. Chaotic Dyn., 20:1 (2015), 63–73
Citation in format AMSBIB
\Bibitem{BarCheChe15}
\by Boris S. Bardin, Evgeniya A. Chekina, Alexander M. Chekin
\paper On the Stability of a Planar Resonant Rotation of a Satellite in an Elliptic Orbit
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 1
\pages 63--73
\mathnet{http://mi.mathnet.ru/rcd61}
\crossref{https://doi.org/10.1134/S1560354715010050}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3304938}
\zmath{https://zbmath.org/?q=an:1325.70032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000349024900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944180677}
Linking options:
  • https://www.mathnet.ru/eng/rcd61
  • https://www.mathnet.ru/eng/rcd/v20/i1/p63
  • This publication is cited in the following 21 articles:
    1. Xue Zhong, Jie Zhao, Yunfeng Gao, Kaiping Yu, Hexi Baoyin, “Analytical solutions and stability of periodic attitude motions of gyrostat spacecrafts in weakly elliptical orbits”, Communications in Nonlinear Science and Numerical Simulation, 141 (2025), 108499  crossref
    2. Xue Zhong, Jie Zhao, Lunhu Hu, Kaiping Yu, Hexi Baoyin, “Periodic attitude motions of an axisymmetric spacecraft in an elliptical orbit near the hyperbolic precession”, Applied Mathematical Modelling, 2024, 115845  crossref
    3. José Laudelino de Menezes Neto, “Investigation of the nonlinear stability of a pendulum with variable length in elliptic orbit”, DCDS-B, 29:4 (2024), 1611  crossref
    4. Xue Zhong, Jie Zhao, Kaiping Yu, Minqiang Xu, “Stability Analysis of Resonant Rotation of a Gyrostat in an Elliptic Orbit Under Third- and Fourth-Order Resonances”, Regul. Chaotic Dyn., 28:2 (2023), 162–190  mathnet  crossref  mathscinet
    5. B. S. Bardin, B. A. Maksimov, “On the Orbital Stability of Pendulum Periodic Motions of a Heavy Rigid Body with a Fixed Point, the Main Moments of Inertia of which are in the Ratio 1 : 4 : 1”, Prikladnaâ matematika i mehanika, 87:5 (2023), 784  crossref
    6. Jie Zhao, Xue Zhong, Kaiping Yu, Minqiang Xu, “Effect of gyroscopic moments on the attitude stability of a satellite in an elliptical orbit”, Nonlinear Dyn, 111:16 (2023), 14957  crossref
    7. B. S. Bardin, B. A. Maksimov, “On the Orbital Stability of Pendulum Periodic Motions of a Heavy Rigid Body with a Fixed Point in the Case of Principal Inertia Moments Ratio 1 : 4 : 1”, Mech. Solids, 58:8 (2023), 2894  crossref
    8. B. S. Bardin, E. A. Chekina, A. M. Chekin, “On the Orbital Stability of Pendulum Oscillations of a Dynamically Symmetric Satellite”, Rus. J. Nonlin. Dyn., 18:4 (2022), 589–607  mathnet  crossref  mathscinet
    9. B. S. Bardin, E. A. Chekina, “On the Orbital Stability of Pendulum-like Oscillations of a Heavy Rigid Body with a Fixed Point in the Bobylev – Steklov Case”, Rus. J. Nonlin. Dyn., 17:4 (2021), 453–464  mathnet  crossref
    10. Zhong X. Zhao J. Yu K. Xu M., “On the Stability of Periodic Motions of a Two-Body System With Flexible Connection in An Elliptical Orbit”, Nonlinear Dyn., 104:4 (2021), 3479–3496  crossref  isi  scopus
    11. B S Bardin, “Local coordinates in problem of the orbital stability of pendulum-like oscillations of a heavy rigid body in the Bobylev–Steklov case”, J. Phys.: Conf. Ser., 1925:1 (2021), 012016  crossref
    12. T Churkina, “On stability of planar periodic motions of a satellite in vicinity of resonant rotation”, IOP Conf. Ser.: Mater. Sci. Eng., 927:1 (2020), 012004  crossref
    13. Z. Liang, F. Liao, “Periodic solutions for a dumbbell satellite equation”, Nonlinear Dyn., 95:3 (2019), 2469–2476  crossref  zmath  isi  scopus
    14. B. S. Bardin, E. A. Chekina, “On the constructive algorithm for stability investigation of an equilibrium point of a periodic Hamiltonian system with two degrees of freedom in first-order resonance case”, Mech. Sol., 53:2 (2018), S15–S25  crossref  mathscinet  isi  scopus
    15. B. S. Bardin, A. N. Avdushkin, “Stability analysis of an equilibrium position in the photogravitational Sitnikov problem”, Eighth Polyakhov's Reading, AIP Conf. Proc., 1959, eds. E. Kustova, G. Leonov, N. Morosov, M. Yushkov, M. Mekhonoshina, Amer. Inst. Phys., 2018, 040002  crossref  isi  scopus
    16. B. S. Bardin, E. A. Chekina, “On orbital stability of planar oscillations of a satellite in a circular orbit on the boundary of the parametric resonance”, Eighth Polyakhov's Reading, AIP Conf. Proc., 1959, eds. E. Kustova, G. Leonov, N. Morosov, M. Yushkov, M. Mekhonoshina, Amer. Inst. Phys., 2018, 040003  crossref  isi  scopus
    17. Boris S. Bardin, Evgeniya A. Chekina, “On the Constructive Algorithm for Stability Analysis of an Equilibrium Point of a Periodic Hamiltonian System with Two Degrees of Freedom in the Second-order Resonance Case”, Regul. Chaotic Dyn., 22:7 (2017), 808–823  mathnet  crossref
    18. Tatyana E. Churkina, Sergey Y. Stepanov, “On the Stability of Periodic Mercury-type Rotations”, Regul. Chaotic Dyn., 22:7 (2017), 851–864  mathnet  crossref
    19. J. Chu, Z. Liang, P. J. Torres, Zh. Zhou, “Existence and stability of periodic oscillations of a rigid Dumbbell satellite around its center of mass”, Discrete Contin. Dyn. Syst.-Ser. B, 22:7 (2017), 2669–2685  crossref  mathscinet  zmath  isi  scopus
    20. B. S. Bardin, E. A. Chekina, “Ob ustoichivosti rezonansnogo vrascheniya sputnika na ellipticheskoi orbite”, Nelineinaya dinam., 12:4 (2016), 619–632  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:320
    References:95
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025