Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2008, Volume 13, Issue 6, Pages 602–644
DOI: https://doi.org/10.1134/S1560354708060105
(Mi rcd605)
 

This article is cited in 12 scientific papers (total in 12 papers)

JÜRGEN MOSER – 80

Global properties of integrable Hamiltonian systems

F. Takens, H. W. Broer, O. V. Lukina

Institute for Mathematics and Computer Science, University of Groningen P.O. Box 407, 9700 AK Groningen, The Netherlands
Citations (12)
Abstract: This paper deals with Lagrangian bundles which are symplectic torus bundles that occur in integrable Hamiltonian systems. We review the theory of obstructions to triviality, in particular monodromy, as well as the ensuing classification problems which involve the Chern and Lagrange class. Our approach, which uses simple ideas from differential geometry and algebraic topology, reveals the fundamental role of the integer affine structure on the base space of these bundles. We provide a geometric proof of the classification of Lagrangian bundles with fixed integer affine structure by their Lagrange class.
Keywords: integrable Hamiltonian system, global action-angle coordinates, symplectic topology, monodromy, Lagrange class, classification of integrable systems.
Received: 31.05.2008
Accepted: 22.08.2008
Bibliographic databases:
Document Type: Personalia
Language: English
Citation: F. Takens, H. W. Broer, O. V. Lukina, “Global properties of integrable Hamiltonian systems”, Regul. Chaotic Dyn., 13:6 (2008), 602–644
Citation in format AMSBIB
\Bibitem{TakBroLuk08}
\by F. Takens, H.~W.~Broer, O.~V.~Lukina
\paper Global properties of integrable Hamiltonian systems
\jour Regul. Chaotic Dyn.
\yr 2008
\vol 13
\issue 6
\pages 602--644
\mathnet{http://mi.mathnet.ru/rcd605}
\crossref{https://doi.org/10.1134/S1560354708060105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2465728}
\zmath{https://zbmath.org/?q=an:1229.37052}
Linking options:
  • https://www.mathnet.ru/eng/rcd605
  • https://www.mathnet.ru/eng/rcd/v13/i6/p602
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024