Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2008, Volume 13, Issue 6, Pages 645–668
DOI: https://doi.org/10.1134/S1560354708060117
(Mi rcd606)
 

This article is cited in 13 scientific papers (total in 13 papers)

JÜRGEN MOSER – 80

Foliations of isonergy surfaces and singularities of curves

M. Radnovića, V. Rom-Kedarb

a Mathematical Institute SANU, Belgrade, Serbia
b The Estrin Family Chair of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel
Citations (13)
Abstract: It is well known that changes in the Liouville foliations of the isoenergy surfaces of an integrable system imply that the bifurcation set has singularities at the corresponding energy level.We formulate certain genericity assumptions for two degrees of freedom integrable systems and we prove the opposite statement: the essential critical points of the bifurcation set appear only if the Liouville foliations of the isoenergy surfaces change at the corresponding energy levels. Along the proof, we give full classification of the structure of the isoenergy surfaces near the critical set under our genericity assumptions and we give their complete list using Fomenko graphs. This may be viewed as a step towards completing the Smale program for relating the energy surfaces foliation structure to singularities of the momentum mappings for non-degenerate integrable two degrees of freedom systems.
Keywords: Hamiltonian system, integrable system, singularity, Liouville foliation, isoenergy manifold, bifurcation set, Liouville equivalence.
Received: 05.10.2008
Accepted: 06.11.2008
Bibliographic databases:
Document Type: Personalia
Language: English
Citation: M. Radnović, V. Rom-Kedar, “Foliations of isonergy surfaces and singularities of curves”, Regul. Chaotic Dyn., 13:6 (2008), 645–668
Citation in format AMSBIB
\Bibitem{RadRom08}
\by M.~Radnovi{\'c}, V.~Rom-Kedar
\paper Foliations of isonergy surfaces and singularities of curves
\jour Regul. Chaotic Dyn.
\yr 2008
\vol 13
\issue 6
\pages 645--668
\mathnet{http://mi.mathnet.ru/rcd606}
\crossref{https://doi.org/10.1134/S1560354708060117}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2465729}
\zmath{https://zbmath.org/?q=an:1229.37074}
Linking options:
  • https://www.mathnet.ru/eng/rcd606
  • https://www.mathnet.ru/eng/rcd/v13/i6/p645
  • This publication is cited in the following 13 articles:
    1. V. Dragović, M. Radnović, “Magic billiards: the case of elliptical boundaries”, Mat. Sb., 216:5 (2025), 83–105  mathnet  mathnet  crossref
    2. E. A. Kudryavtseva, L. M. Lerman, “Bifurcations in Integrable Systems with Three Degrees of Freedom. I”, Proc. Steklov Inst. Math., 327 (2024), 130–207  mathnet  crossref  crossref
    3. Vladimir Dragović, Sean Gasiorek, Milena Radnović, “Billiard Ordered Games and Books”, Regul. Chaotic Dyn., 27:2 (2022), 132–150  mathnet  crossref  mathscinet
    4. Pnueli M. Rom-Kedar V., “On the Structure of Hamiltonian Impact Systems”, Nonlinearity, 34:4 (2021), 2611–2658  crossref  mathscinet  isi  scopus
    5. M. P. Kharlamov, P. E. Ryabov, I. I. Kharlamova, “Topological Atlas of the Kovalevskaya–Yehia Gyrostat”, J. Math. Sci. (N. Y.), 227:3 (2017), 241–386  mathnet  mathnet  crossref  scopus
    6. Souhail Wahid, Hedi Khammari, Mohammed Faouzi Mimouni, 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 2015, 480  crossref
    7. M.P. Kharlamov, “Phase topology of one system with separated variables and singularities of the symplectic structure”, Journal of Geometry and Physics, 87 (2015), 248  crossref
    8. A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Topology and stability of integrable systems”, Russian Math. Surveys, 65:2 (2010), 259–318  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    9. V. Dragović, M. Radnović, “Integrable billiards and quadrics”, Russian Math. Surveys, 65:2 (2010), 319–379  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    10. V Rom-Kedar, D Turaev, “The symmetric parabolic resonance”, Nonlinearity, 23:6 (2010), 1325  crossref
    11. K Efstathiou, D Sugny, “Integrable Hamiltonian systems with swallowtails”, J. Phys. A: Math. Theor., 43:8 (2010), 085216  crossref
    12. Eli Shlizerman, Vered Rom-Kedar, “Classification of solutions of the forced periodic nonlinear Schrödinger equation”, Nonlinearity, 23:9 (2010), 2183  crossref
    13. V. Dragović, M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4 (2009), 479–494  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:110
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025