Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2008, Volume 13, Issue 6, Pages 593–601
DOI: https://doi.org/10.1134/S1560354708060099
(Mi rcd604)
 

This article is cited in 3 scientific papers (total in 3 papers)

JÜRGEN MOSER – 80

New Lax pair for restricted multiple three wave interaction system, quasiperiodic solutions and bi-Hamiltonian structure

N.A. Kostova, A. V. Tsiganovb

a Institute for Electronics, Bulgarian Academy of Sciences, Blvd. Tzarigradsko chaussee 72, 1784 Sofia, Bulgaria
b Department of Mathematical and Computational Physics, St. Petersburg State University, Russia
Citations (3)
Abstract: We study restricted multiple three wave interaction system by the inverse scattering method. We develop the algebraic approach in terms of classical $r$-matrix and give an interpretation of the Poisson brackets as linear $r$-matrix algebra. The solutions are expressed in terms of polynomials of theta functions. In particular case for $n=1$ in terms of Weierstrass functions.
Keywords: Lax pair, bi-Hamiltonian structure, three wave interaction system.
Received: 28.08.2008
Accepted: 12.10.2008
Bibliographic databases:
Document Type: Personalia
MSC: 37K10, 70E20, 70E4
Language: English
Citation: N.A. Kostov, A. V. Tsiganov, “New Lax pair for restricted multiple three wave interaction system, quasiperiodic solutions and bi-Hamiltonian structure”, Regul. Chaotic Dyn., 13:6 (2008), 593–601
Citation in format AMSBIB
\Bibitem{KosTsi08}
\by N.A. Kostov, A.~V.~Tsiganov
\paper New Lax pair for restricted multiple three wave interaction system, quasiperiodic solutions and bi-Hamiltonian structure
\jour Regul. Chaotic Dyn.
\yr 2008
\vol 13
\issue 6
\pages 593--601
\mathnet{http://mi.mathnet.ru/rcd604}
\crossref{https://doi.org/10.1134/S1560354708060099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2465727}
\zmath{https://zbmath.org/?q=an:1229.37094}
Linking options:
  • https://www.mathnet.ru/eng/rcd604
  • https://www.mathnet.ru/eng/rcd/v13/i6/p593
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024