Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2009, Volume 14, Issue 3, Pages 349–388
DOI: https://doi.org/10.1134/S1560354709020063
(Mi rcd587)
 

This article is cited in 12 scientific papers (total in 12 papers)

Darboux Points and Integrability of Homogeneous Hamiltonian Systems with Three and More Degrees of Freedom. Nongeneric Cases

M. Przybylska

Toruń Centre for Astronomy, N. Copernicus University, Gagarina 11, PL-87–100 Toruń, Poland
Citations (12)
Abstract: In this paper the problem of classification of integrable natural Hamiltonian systems with $n$ degrees of freedom given by a Hamilton function, which is the sum of the standard kinetic energy and a homogeneous polynomial potential $V$ of degree $k>2$, is investigated. It is assumed that the potential is not generic. Except for some particular cases a potential $V$ is not generic if it admits a nonzero solution of equation $V'(\boldsymbol{d})=0$. The existence of such a solution gives very strong integrability obstructions obtained in the frame of the Morales–Ramis theory. This theory also gives additional integrability obstructions which have the form of restrictions imposed on the eigenvalues $(\lambda_1,\ldots,\lambda_n)$ of the Hessian matrix $V''(\boldsymbol{d})$ calculated at a nonzero $\boldsymbol{d}\in\mathbb{C}^n$ satisfying $V'(\boldsymbol{d})=\boldsymbol{d}$. In our previous work we showed that for generic potentials some universal relations between $(\lambda_1,\ldots,\lambda_{n})$ calculated at various solutions of $V'(\boldsymbol{d})=\boldsymbol{d}$ exist. These relations allow one to prove that the number of potentials satisfying the necessary conditions for the integrability is finite. The main aim of this paper was to show that relations of such forms also exist for nongeneric potentials. We show their existence and derive them for the case $n=k=3$ applying the multivariable residue calculus. We demonstrate the strength of the results analyzing in details the nongeneric cases for $n=k=3$. Our analysis covers all the possibilities and we distinguish those cases where known methods are too weak to decide if the potential is integrable or not. Moreover, for $n=k=3$, thanks to this analysis, a three-parameter family of potentials integrable or superintegrable with additional polynomial first integrals which seemingly can be of an arbitrarily high degree with respect to the momenta was distinguished.
Keywords: integrability, Hamiltonian systems, homogeneous potentials, differential Galois group.
Received: 30.05.2008
Accepted: 14.01.2009
Bibliographic databases:
Document Type: Article
Language: English
Citation: M. Przybylska, “Darboux Points and Integrability of Homogeneous Hamiltonian Systems with Three and More Degrees of Freedom. Nongeneric Cases”, Regul. Chaotic Dyn., 14:3 (2009), 349–388
Citation in format AMSBIB
\Bibitem{Prz09}
\by M. Przybylska
\paper Darboux Points and Integrability of Homogeneous Hamiltonian Systems with Three and More Degrees of Freedom. Nongeneric Cases
\jour Regul. Chaotic Dyn.
\yr 2009
\vol 14
\issue 3
\pages 349--388
\mathnet{http://mi.mathnet.ru/rcd587}
\crossref{https://doi.org/10.1134/S1560354709020063}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2525619}
\zmath{https://zbmath.org/?q=an:1229.37060}
Linking options:
  • https://www.mathnet.ru/eng/rcd587
  • https://www.mathnet.ru/eng/rcd/v14/i3/p349
  • This publication is cited in the following 12 articles:
    1. Maria Przybylska, Andrzej J. Maciejewski, “Non-integrability of charged three-body problem”, Celest Mech Dyn Astron, 137:1 (2025)  crossref
    2. Orest Artemovych, Denis Blackmore, Radosław Kycia, Anatolij Prykarpatski, Contemporary Mathematics, 789, The Diverse World of PDEs, 2023, 19  crossref
    3. Maria Przybylska, Andrzej J. Maciejewski, “Integrability of Hamiltonian systems with gyroscopic term”, Nonlinear Dyn, 111:1 (2023), 275  crossref
    4. Maria Przybylska, Wojciech Szumiński, Andrzej J. Maciejewski, “Destructive relativity”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33:6 (2023)  crossref
    5. A. V. Tsiganov, “On bi-Integrable Natural Hamiltonian Systems on Riemannian Manifolds”, JNMP, 18:2 (2021), 245  crossref
    6. Jaume Llibre, Yuzhou Tian, “A survey on the Kovalevskaya exponents and their applications”, Journal of Mathematical Analysis and Applications, 504:2 (2021), 125576  crossref
    7. Andrzej J. Maciejewski, Maria Przybylska, “Global Properties of Kovalevskaya Exponents”, Regul. Chaotic Dyn., 22:7 (2017), 840–850  mathnet  crossref
    8. Andrzej J. Maciejewski, Wojciech Szumiński, Maria Przybylska, “Note on integrability of certain homogeneous Hamiltonian systems in 2D constant curvature spaces”, Physics Letters A, 381:7 (2017), 725  crossref
    9. Michał Studziński, Maria Przybylska, “Darboux points and integrability analysis of Hamiltonian systems with homogeneous rational potentials”, Physica D: Nonlinear Phenomena, 249 (2013), 1  crossref
    10. A.J. Maciejewski, M. Przybylska, A.V. Tsiganov, “On algebraic construction of certain integrable and super-integrable systems”, Physica D: Nonlinear Phenomena, 240:18 (2011), 1426  crossref
    11. ANDRZEJ J. MACIEJEWSKI, MARIA PRZYBYLSKA, “DIFFERENTIAL GALOIS THEORY AND INTEGRABILITY”, Int. J. Geom. Methods Mod. Phys., 06:08 (2009), 1357  crossref
    12. M. Przybylska, “Darboux points and integrability of homogeneous Hamiltonian systems with three and more degrees of freedom. Nongeneric cases”, Regul. Chaot. Dyn., 14:3 (2009), 349  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:106
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025