Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2009, Volume 14, Issue 3, Pages 349–388
DOI: https://doi.org/10.1134/S1560354709020063
(Mi rcd587)
 

This article is cited in 11 scientific papers (total in 11 papers)

Darboux Points and Integrability of Homogeneous Hamiltonian Systems with Three and More Degrees of Freedom. Nongeneric Cases

M. Przybylska

Toruń Centre for Astronomy, N. Copernicus University, Gagarina 11, PL-87–100 Toruń, Poland
Citations (11)
Abstract: In this paper the problem of classification of integrable natural Hamiltonian systems with $n$ degrees of freedom given by a Hamilton function, which is the sum of the standard kinetic energy and a homogeneous polynomial potential $V$ of degree $k>2$, is investigated. It is assumed that the potential is not generic. Except for some particular cases a potential $V$ is not generic if it admits a nonzero solution of equation $V'(\boldsymbol{d})=0$. The existence of such a solution gives very strong integrability obstructions obtained in the frame of the Morales–Ramis theory. This theory also gives additional integrability obstructions which have the form of restrictions imposed on the eigenvalues $(\lambda_1,\ldots,\lambda_n)$ of the Hessian matrix $V''(\boldsymbol{d})$ calculated at a nonzero $\boldsymbol{d}\in\mathbb{C}^n$ satisfying $V'(\boldsymbol{d})=\boldsymbol{d}$. In our previous work we showed that for generic potentials some universal relations between $(\lambda_1,\ldots,\lambda_{n})$ calculated at various solutions of $V'(\boldsymbol{d})=\boldsymbol{d}$ exist. These relations allow one to prove that the number of potentials satisfying the necessary conditions for the integrability is finite. The main aim of this paper was to show that relations of such forms also exist for nongeneric potentials. We show their existence and derive them for the case $n=k=3$ applying the multivariable residue calculus. We demonstrate the strength of the results analyzing in details the nongeneric cases for $n=k=3$. Our analysis covers all the possibilities and we distinguish those cases where known methods are too weak to decide if the potential is integrable or not. Moreover, for $n=k=3$, thanks to this analysis, a three-parameter family of potentials integrable or superintegrable with additional polynomial first integrals which seemingly can be of an arbitrarily high degree with respect to the momenta was distinguished.
Keywords: integrability, Hamiltonian systems, homogeneous potentials, differential Galois group.
Received: 30.05.2008
Accepted: 14.01.2009
Bibliographic databases:
Document Type: Article
Language: English
Citation: M. Przybylska, “Darboux Points and Integrability of Homogeneous Hamiltonian Systems with Three and More Degrees of Freedom. Nongeneric Cases”, Regul. Chaotic Dyn., 14:3 (2009), 349–388
Citation in format AMSBIB
\Bibitem{Prz09}
\by M. Przybylska
\paper Darboux Points and Integrability of Homogeneous Hamiltonian Systems with Three and More Degrees of Freedom. Nongeneric Cases
\jour Regul. Chaotic Dyn.
\yr 2009
\vol 14
\issue 3
\pages 349--388
\mathnet{http://mi.mathnet.ru/rcd587}
\crossref{https://doi.org/10.1134/S1560354709020063}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2525619}
\zmath{https://zbmath.org/?q=an:1229.37060}
Linking options:
  • https://www.mathnet.ru/eng/rcd587
  • https://www.mathnet.ru/eng/rcd/v14/i3/p349
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024