Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2009, Volume 14, Issue 3, Pages 323–348
DOI: https://doi.org/10.1134/S1560354709030010
(Mi rcd553)
 

This article is cited in 10 scientific papers (total in 10 papers)

Non-Integrability of Hamiltonian Systems Through High Order Variational Equations: Summary of Results and Examples

R. Martíneza, C. Simób

a Dept. de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
b Dept. de Matemàtica Aplicada i Anàlisi, Univ. de Barcelona, Gran Via 585, 08007 Barcelona, Spain
Citations (10)
Abstract: This paper deals with non-integrability criteria, based on differential Galois theory and requiring the use of higher order variational equations. A general methodology is presented to deal with these problems. We display a family of Hamiltonian systems which require the use of order k variational equations, for arbitrary values of $k$, to prove non-integrability. Moreover, using third order variational equations we prove the non-integrability of a non-linear springpendulum problem for the values of the parameter that can not be decided using first order variational equations.
Keywords: non-integrability criteria, differential Galois theory, higher order variationals, springpendulum system.
Received: 28.11.2008
Accepted: 06.04.2009
Bibliographic databases:
Document Type: Article
MSC: 37J30, 70H07, 34M35
Language: English
Citation: R. Martínez, C. Simó, “Non-Integrability of Hamiltonian Systems Through High Order Variational Equations: Summary of Results and Examples”, Regul. Chaotic Dyn., 14:3 (2009), 323–348
Citation in format AMSBIB
\Bibitem{MarSim09}
\by R. Mart{\'\i}nez, C. Sim\'o
\paper Non-Integrability of Hamiltonian Systems Through High Order Variational Equations: Summary of Results and Examples
\jour Regul. Chaotic Dyn.
\yr 2009
\vol 14
\issue 3
\pages 323--348
\mathnet{http://mi.mathnet.ru/rcd553}
\crossref{https://doi.org/10.1134/S1560354709030010}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2525618}
\zmath{https://zbmath.org/?q=an:1229.37058}
Linking options:
  • https://www.mathnet.ru/eng/rcd553
  • https://www.mathnet.ru/eng/rcd/v14/i3/p323
  • This publication is cited in the following 10 articles:
    1. Joan Gimeno, Àngel Jorba, Marc Jorba-Cuscó, Narcís Miguel, Maorong Zou, “Numerical integration of high-order variational equations of ODEs”, Applied Mathematics and Computation, 442 (2023), 127743  crossref
    2. Sergi Simon, “Conditions and evidence for non-integrability in the Friedmann-Robertson-Walker Hamiltonian”, JNMP, 21:1 (2021), 1  crossref
    3. Tatyana E. Churkina, Sergey Y. Stepanov, “On the Stability of Periodic Mercury-type Rotations”, Regul. Chaotic Dyn., 22:7 (2017), 851–864  mathnet  crossref
    4. A. Aparicio-Monforte, T. Dreyfus, J.-A. Weil, “Liouville integrability: An effective Morales–Ramis–Simó theorem”, Journal of Symbolic Computation, 74 (2016), 537  crossref
    5. Juan J. Morales-Ruiz, “Picard–Vessiot theory and integrability”, Journal of Geometry and Physics, 87 (2015), 314  crossref
    6. Carles Simó, “Measuring the total amount of chaos in some Hamiltonian systems”, Discrete & Continuous Dynamical Systems - A, 34:12 (2014), 5135  crossref
    7. Sergi Simon, “Linearised higher variational equations”, DCDS-A, 34:11 (2014), 4827  crossref
    8. Thierry Combot, Christoph Koutschan, “Third order integrability conditions for homogeneous potentials of degree -1”, Journal of Mathematical Physics, 53:8 (2012)  crossref
    9. Regina Martínez, Carles Simó, “Non-integrability of the degenerate cases of the Swinging Atwood's Machine using higher order variational equations”, Discrete & Continuous Dynamical Systems - A, 29:1 (2011), 1  crossref
    10. O. Pujol, J.P. Pérez, J.P. Ramis, C. Simó, S. Simon, J.A. Weil, “Swinging Atwood Machine: Experimental and numerical results, and a theoretical study”, Physica D: Nonlinear Phenomena, 239:12 (2010), 1067  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:113
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025