Abstract:
We consider the Euler approach to constructing to investigating of the superintegrable systems related to the addition theorems. As an example we reconstruct Drach systems and get some new two-dimensional superintegrable Stäckel systems.
Tsiganov A.V., “Transformation of the Stackel Marices Preserving Superintegrability”, J. Math. Phys., 60:4 (2019), 042701
A. V. Tsiganov, “Superintegrable systems with algebraic and rational integrals of motion”, Theoret. and Math. Phys., 199:2 (2019), 659–674
Yu.A. Grigoriev, A.V. Tsiganov, “On superintegrable systems separable in Cartesian coordinates”, Physics Letters A, 382:32 (2018), 2092
Andrey V. Tsiganov, “Superintegrable Stäckel systems on the plane: elliptic and parabolic coordinates”, SIGMA, 8 (2012), 031, 9 pp.
Ernie G. Kalnins, Willard Miller Jr., “Structure theory for extended Kepler–Coulomb 3D classical superintegrable systems”, SIGMA, 8 (2012), 034, 25 pp.
Claudia Chanu, Luca Degiovanni, Giovanni Rastelli, “First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator”, SIGMA, 7 (2011), 038, 12 pp.
Claudia Chanu, Luca Degiovanni, Giovanni Rastelli, “Three and Four-body Systems in One Dimension: Integrability, Superintegrability and Discrete Symmetries”, Regul. Chaotic Dyn., 16:5 (2011), 496–503
A.J. Maciejewski, M. Przybylska, A.V. Tsiganov, “On algebraic construction of certain integrable and super-integrable systems”, Physica D: Nonlinear Phenomena, 240:18 (2011), 1426
A V Tsiganov, “On the superintegrable Richelot systems”, J. Phys. A: Math. Theor., 43:5 (2010), 055201
A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Superintegrable system on a sphere with the integral of higher degree”, Regul. Chaotic Dyn., 14:6 (2009), 615–620