Abstract:
This paper is concerned with the motion of the Chaplygin sleigh on the surface of a circular cylinder. In the case of inertial motion, the problem reduces to the study of the dynamical system on a (two-dimensional) torus and to the classification of singular points. Particular cases in which the system admits an invariant measure are found.
In the case of a balanced and dynamically symmetric Chaplygin sleigh moving in a gravitational field it is shown that on the average the system has no drift along the vertical.
Citation:
Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Dynamics of the Chaplygin Sleigh on a Cylinder”, Regul. Chaotic Dyn., 21:1 (2016), 136–146
\Bibitem{BizBorMam16}
\by Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev
\paper Dynamics of the Chaplygin Sleigh on a Cylinder
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 1
\pages 136--146
\mathnet{http://mi.mathnet.ru/rcd58}
\crossref{https://doi.org/10.1134/S1560354716010081}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3457080}
\zmath{https://zbmath.org/?q=an:1346.70006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373028300008}
\elib{https://elibrary.ru/item.asp?id=26952431}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957548917}