Loading [MathJax]/jax/output/SVG/config.js
Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2016, Volume 12, Number 4, Pages 675–687
DOI: https://doi.org/10.20537/nd1604010
(Mi nd546)
 

This article is cited in 12 scientific papers (total in 12 papers)

Translated papers

Dynamics of the Chaplygin sleigh on a cylinder

I. A. Bizyaeva, A. V. Borisovbc, I. S. Mamaeva

a Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034, Russia
b Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow, 141700, Russia
c National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, Moscow, 115409, Russia
References:
Abstract: This paper is concerned with the motion of the Chaplygin sleigh on the surface of a circular cylinder. In the case of inertial motion, the problem reduces to the study of the dynamical system on a (two-dimensional) torus and to the classification of singular points. Particular cases in which the system admits an invariant measure are found. In the case of a balanced and dynamically symmetric Chaplygin sleigh moving in a gravitational field it is shown that on the average the system has no drift along the vertical.
Keywords: Chaplygin sleigh, invariant measure, nonholonomic mechanics.
Received: 16.10.2015
Accepted: 28.12.2015
English version:
Regular and Chaotic Dynamics, 2016, Volume 21, Issue 1, Pages 136–146
DOI: https://doi.org/10.1134/S1560354716010081
Bibliographic databases:
Document Type: Article
UDC: 531.38
MSC: 37J60, 37C10
Language: Russian
Citation: I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Dynamics of the Chaplygin sleigh on a cylinder”, Nelin. Dinam., 12:4 (2016), 675–687; Regular and Chaotic Dynamics, 21:1 (2016), 136–146
Citation in format AMSBIB
\Bibitem{BizBorMam16}
\by I.~A.~Bizyaev, A.~V.~Borisov, I.~S.~Mamaev
\paper Dynamics of the Chaplygin sleigh on a cylinder
\jour Nelin. Dinam.
\yr 2016
\vol 12
\issue 4
\pages 675--687
\mathnet{http://mi.mathnet.ru/nd546}
\crossref{https://doi.org/10.20537/nd1604010}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3453983}
\zmath{https://zbmath.org/?q=an:1346.70006}
\elib{https://elibrary.ru/item.asp?id=27715771}
\transl
\jour Regular and Chaotic Dynamics
\yr 2016
\vol 21
\issue 1
\pages 136--146
\crossref{https://doi.org/10.1134/S1560354716010081}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957548917}
Linking options:
  • https://www.mathnet.ru/eng/nd546
  • https://www.mathnet.ru/eng/nd/v12/i4/p675
    Translation
    This publication is cited in the following 12 articles:
    1. Ali Ahmadi, Mahdi Gorji, Ahmad Peymaei, Kimia Khosravi Soofi, Ali Kamali, “Autonomous swimming on limit cycles with disturbance rejection capability for a fish-inspired robot”, Nonlinear Dyn, 2024  crossref
    2. Alexander Kilin, Yuriy Karavaev, Kirill Yefremov, Lecture Notes in Networks and Systems, 324, Robotics for Sustainable Future, 2022, 428  crossref
    3. Elizaveta M. Artemova, Alexander A. Kilin, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1  crossref
    4. Kirill S. Yefremov, Tatiana B. Ivanova, Alexander A. Kilin, Yury L. Karavaev, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1  crossref
    5. I. A. Bizyaev, A. V. Borisov, V. V. Kozlov, I. S. Mamaev, “Fermi-like acceleration and power-law energy growth in nonholonomic systems”, Nonlinearity, 32:9 (2019), 3209–3233  mathnet  crossref  isi  scopus
    6. Borislav Gajić, Božidar Jovanović, “Nonholonomic connections, time reparametrizations, and integrability of the rolling ball over a sphere”, Nonlinearity, 32:5 (2019), 1675  crossref
    7. Vitaliy Fedonyuk, Phanindra Tallapragada, “Sinusoidal control and limit cycle analysis of the dissipative Chaplygin sleigh”, Nonlinear Dyn, 93:2 (2018), 835  crossref
    8. A. P. Ivanov, “On singular points of equations of mechanics”, Dokl. Math., 97:2 (2018), 167–169  mathnet  mathnet  crossref  crossref  isi  scopus
    9. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. A. A. Oshemkov, P. E. Ryabov, S. V. Sokolov, “Explicit determination of certain periodic motions of a generalized two-field gyrostat”, Russ. J. Math. Phys., 24:4 (2017), 517  crossref
    11. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975  mathnet  crossref  isi  scopus
    12. I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “The Hess–Appelrot system and its nonholonomic analogs”, Proc. Steklov Inst. Math., 294 (2016), 252–275  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:393
    Full-text PDF :130
    References:74
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025