Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2016, Volume 21, Issue 1, Pages 126–135
DOI: https://doi.org/10.1134/S156035471601007X
(Mi rcd70)
 

This article is cited in 9 scientific papers (total in 9 papers)

Parametric Stability in Robe's Problem

Lucas Rezende Valeriano

Departamento de Matemática, Universidade Federal de Sergipe, Cidade Universitária Prof. José Aloísio de Campos, São Cristóvão, SE, Brasil
Citations (9)
References:
Abstract: In this work we have given a Hamiltonian formulation to Robe's problem, obtaining again the classic results. We have computed the resonances existing in the circular case and obtained some information with regard to the linear stability of the central equilibrium of Robe's problem in the elliptic case. In some critical cases we have constructed, in the parameter plane, the boundary curves that separate the regions of stability and instability.
Keywords: Robe's problem, restricted three-body problem, parametric stability.
Funding agency Grant number
Coordenaҫão de Aperfeiҫoamento de Pessoal de Nível Superior
We would like to thank CAPES/MathAmSud for financial support during the preparation of this work.
Received: 15.09.2015
Accepted: 30.09.2015
Bibliographic databases:
Document Type: Article
MSC: 34D20, 70F07, 70F15
Language: English
Citation: Lucas Rezende Valeriano, “Parametric Stability in Robe's Problem”, Regul. Chaotic Dyn., 21:1 (2016), 126–135
Citation in format AMSBIB
\Bibitem{Val16}
\by Lucas Rezende Valeriano
\paper Parametric Stability in Robe's Problem
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 1
\pages 126--135
\mathnet{http://mi.mathnet.ru/rcd70}
\crossref{https://doi.org/10.1134/S156035471601007X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3457079}
\zmath{https://zbmath.org/?q=an:06580145}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373028300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957568444}
Linking options:
  • https://www.mathnet.ru/eng/rcd70
  • https://www.mathnet.ru/eng/rcd/v21/i1/p126
  • This publication is cited in the following 9 articles:
    1. Adecarlos C. Carvalho, Gerson C. Araujo, “Parametric Resonance of a Charged Pendulum with a Suspension Point Oscillating Between Two Vertical Charged Lines”, Regul. Chaotic Dyn., 28:3 (2023), 321–331  mathnet  crossref  mathscinet
    2. Hildeberto E. Cabral, Lúcia Brandão Dias, Applied Mathematical Sciences, 218, Normal Forms and Stability of Hamiltonian Systems, 2023, 261  crossref
    3. Yocelyn Péerez-Rothen, Lucas Rezende Valeriano, Claudio Vidal, “On the Parametric Stability of the Isosceles Triangular Libration Points in the Planar Elliptical Charged Restricted Three-body Problem”, Regul. Chaotic Dyn., 27:1 (2022), 98–121  mathnet  crossref  mathscinet
    4. José Laudelino de Menezes Neto, Gerson Cruz Araujo, Yocelyn Pérez Rothen, Claudio Vidal, “Parametric stability of a double pendulum with variable length and with its center of mass in an elliptic orbit”, JGM, 14:3 (2022), 381  crossref
    5. A. A. Burov, V. I. Nikonov, “Libration Points Inside a Spherical Cavity of a Uniformly Rotating Gravitating Ball”, Rus. J. Nonlin. Dyn., 17:4 (2021), 413–427  mathnet  crossref
    6. A. A. Burov, A. D. Guerman, V. I. Nikonov, “Equilibria in the gravitational field of a triangular body”, Celest. Mech. Dyn. Astron., 130:9 (2018), 58  crossref  mathscinet  isi  scopus
    7. A. A. Burov, A. D. German, I. I. Kosenko, V. I. Nikonov, “O prityazhenii ganteleobraznykh tel, predstavlennykh paroi peresekayuschikhsya sharov”, Nelineinaya dinam., 13:2 (2017), 243–256  mathnet  crossref  elib
    8. D. Schmidt, L. Valeriano, “Nonlinear stability of stationary points in the problem of robe”, Discrete Contin. Dyn. Syst.-Ser. B, 21:6 (2016), 1917–1936  crossref  mathscinet  zmath  isi
    9. Dieter Schmidt, Lucas Valeriano, “Nonlinear stability of stationary points in the problem of Robe”, DCDS-B, 21:6 (2016), 1917  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:255
    References:62
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025