Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2017, Volume 22, Issue 8, Pages 937–948
DOI: https://doi.org/10.1134/S1560354717080032
(Mi rcd300)
 

This article is cited in 8 scientific papers (total in 8 papers)

The Second Term in the Asymptotics for the Number of Points Moving Along a Metric Graph

Vsevolod L. Chernysheva, Anton A. Tolchennikovbcd

a National Research University Higher School of Economics, ul. Myasnitskaya 20, Moscow, 101000 Russia
b M. V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991 Russia
c Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
d Institute for Problems in Mechanics, pr. Vernadskogo 101-1, Moscow, 119526 Russia
Citations (8)
References:
Abstract: We consider the problem of determining the asymptotics for the number of points moving along a metric graph. This problem is motivated by the problem of the evolution of wave packets, which at the initial moment of time are localized in a small neighborhood of one point. It turns out that the number of points, as a function of time, allows a polynomial approximation. This polynomial is expressed via Barnes’ multiple Bernoulli polynomials, which are related to the problem of counting the number of lattice points in expanding simplexes.
In this paper we give explicit formulas for the first two terms of the expansion for the counting function of the number of moving points. The leading term was found earlier and depends only on the number of vertices, the number of edges and the lengths of the edges. The second term in the expansion shows what happens to the graph when one or two edges are removed. In particular, whether it breaks up into several connected components or not. In this paper, examples of the calculation of the leading and second terms are given.
Keywords: metric graphs, Barnes’ multiple Bernoulli polynomials, lattice points, dynamical systems.
Funding agency Grant number
Russian Science Foundation 16-11-10069
The research was financially supported by the grant 16-11-10069 of the Russian Science Foundation.
Received: 17.08.2017
Accepted: 25.10.2017
Bibliographic databases:
Document Type: Article
Language: English
Citation: Vsevolod L. Chernyshev, Anton A. Tolchennikov, “The Second Term in the Asymptotics for the Number of Points Moving Along a Metric Graph”, Regul. Chaotic Dyn., 22:8 (2017), 937–948
Citation in format AMSBIB
\Bibitem{CheTol17}
\by Vsevolod L. Chernyshev, Anton A. Tolchennikov
\paper The Second Term in the Asymptotics for the Number of Points Moving Along a Metric Graph
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 8
\pages 937--948
\mathnet{http://mi.mathnet.ru/rcd300}
\crossref{https://doi.org/10.1134/S1560354717080032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425981500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042487750}
Linking options:
  • https://www.mathnet.ru/eng/rcd300
  • https://www.mathnet.ru/eng/rcd/v22/i8/p937
  • This publication is cited in the following 8 articles:
    1. Andrew Eliseev, Vsevolod L. Chernyshev, “Upper bound on saturation time of metric graphs by intervals moving on them”, Journal of Mathematical Analysis and Applications, 531:2 (2024), 127873  crossref
    2. D. V. Pyatko, V. L. Chernyshev, “Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph”, Math. Notes, 113:4 (2023), 538–551  mathnet  crossref  crossref  mathscinet
    3. D. S. Minenkov, V. E. Nazaikinskii, T. W. Hilberdink, V. L. Chernyshev, “Restricted partions: the polynomial case”, Funct. Anal. Appl., 56:4 (2022), 299–309  mathnet  crossref  crossref
    4. V. L. Chernyshev, A. A. Tolchennikov, “A Metric Graph for Which the Number of Possible End Positions of a Random Walk Grows Minimally”, Russ. J. Math. Phys., 29:4 (2022), 426  crossref
    5. V. L. Chernyshev, D. S. Minenkov, A. A. Tolchennikov, “The number of endpoints of a random walk on a semi-infinite metric path graph”, Theoret. and Math. Phys., 207:1 (2021), 487–493  mathnet  crossref  crossref  adsnasa  isi
    6. V. L. Chernyshev, A. A. Tolchennikov, “Asymptotics of the number of endpoints of a random walk on a certain class of directed metric graphs”, Russ. J. Math. Phys., 28:4 (2021), 434–438  crossref  mathscinet  isi  scopus
    7. A. A. Izmaylov, L. W. Dworzanski, “Automated analysis of DP-systems using timed-arc Petri nets via TAPAAL tool”, Trudy ISP RAN, 32:6 (2020), 155–166  mathnet  crossref
    8. Vsevolod Chernyshev, Anton Tolchennikov, “Polynomial approximation for the number of all possible endpoints of a random walk on a metric graph”, Electronic Notes in Discrete Mathematics, 70 (2018), 31  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:213
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025