Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2017, Volume 22, Issue 8, Pages 909–936
DOI: https://doi.org/10.1134/S1560354717080020
(Mi rcd299)
 

This article is cited in 20 scientific papers (total in 20 papers)

Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group

Andrei A. Ardentov, Yuri L. Sachkov

Program Systems Institute of RAS, Pereslavl-Zalessky, Yaroslavl Region, 152020 Russia
Citations (20)
References:
Abstract: We consider the nilpotent left-invariant sub-Riemannian structure on the Engel group. This structure gives a fundamental local approximation of a generic rank $2$ sub-Riemannian structure on a $4$-manifold near a generic point (in particular, of the kinematic models of a car with a trailer). On the other hand, this is the simplest sub-Riemannian structure of step three. We describe the global structure of the cut locus (the set of points where geodesics lose their global optimality), the Maxwell set (the set of points that admit more than one minimizer), and the intersection of the cut locus with the caustic (the set of conjugate points along all geodesics). The group of symmetries of the cut locus is described: it is generated by a one-parameter group of dilations $\mathbb R_+$ and a discrete group of reflections $\mathbb Z_2 \times \mathbb Z_2 \times \mathbb Z_2$. The cut locus admits a stratification with 6 three-dimensional strata, 12 two-dimensional strata, and 2 one-dimensional strata. Three-dimensional strata of the cut locus are Maxwell strata of multiplicity 2 (for each point there are 2 minimizers). Two-dimensional strata of the cut locus consist of conjugate points. Finally, one-dimensional strata are Maxwell strata of infinite multiplicity, they consist of conjugate points as well. Projections of sub-Riemannian geodesics to the 2-dimensional plane of the distribution are Euler elasticae. For each point of the cut locus, we describe the Euler elasticae corresponding to minimizers coming to this point. Finally, we describe the structure of the optimal synthesis, i. e., the set of minimizers for each terminal point in the Engel group.
Keywords: sub-Riemannian geometry, optimal control, Engel group, Maxwell strata, cut locus, mobile robot, Euler's elasticae.
Funding agency Grant number
Russian Science Foundation 17-11-01387
This work was supported by the Russian Science Foundation under grant 17-11-01387 and performed at the Ailamazyan Program Systems Institute of the Russian Academy of Sciences.
Received: 20.09.2017
Accepted: 21.10.2017
Bibliographic databases:
Document Type: Article
MSC: 53C17, 49K15
Language: English
Citation: Andrei A. Ardentov, Yuri L. Sachkov, “Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group”, Regul. Chaotic Dyn., 22:8 (2017), 909–936
Citation in format AMSBIB
\Bibitem{ArdSac17}
\by Andrei A. Ardentov, Yuri L. Sachkov
\paper Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 8
\pages 909--936
\mathnet{http://mi.mathnet.ru/rcd299}
\crossref{https://doi.org/10.1134/S1560354717080020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425981500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042411475}
Linking options:
  • https://www.mathnet.ru/eng/rcd299
  • https://www.mathnet.ru/eng/rcd/v22/i8/p909
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:218
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024