Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2017, Volume 22, Issue 8, Pages 909–936
DOI: https://doi.org/10.1134/S1560354717080020
(Mi rcd299)
 

This article is cited in 21 scientific papers (total in 21 papers)

Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group

Andrei A. Ardentov, Yuri L. Sachkov

Program Systems Institute of RAS, Pereslavl-Zalessky, Yaroslavl Region, 152020 Russia
Citations (21)
References:
Abstract: We consider the nilpotent left-invariant sub-Riemannian structure on the Engel group. This structure gives a fundamental local approximation of a generic rank $2$ sub-Riemannian structure on a $4$-manifold near a generic point (in particular, of the kinematic models of a car with a trailer). On the other hand, this is the simplest sub-Riemannian structure of step three. We describe the global structure of the cut locus (the set of points where geodesics lose their global optimality), the Maxwell set (the set of points that admit more than one minimizer), and the intersection of the cut locus with the caustic (the set of conjugate points along all geodesics). The group of symmetries of the cut locus is described: it is generated by a one-parameter group of dilations $\mathbb R_+$ and a discrete group of reflections $\mathbb Z_2 \times \mathbb Z_2 \times \mathbb Z_2$. The cut locus admits a stratification with 6 three-dimensional strata, 12 two-dimensional strata, and 2 one-dimensional strata. Three-dimensional strata of the cut locus are Maxwell strata of multiplicity 2 (for each point there are 2 minimizers). Two-dimensional strata of the cut locus consist of conjugate points. Finally, one-dimensional strata are Maxwell strata of infinite multiplicity, they consist of conjugate points as well. Projections of sub-Riemannian geodesics to the 2-dimensional plane of the distribution are Euler elasticae. For each point of the cut locus, we describe the Euler elasticae corresponding to minimizers coming to this point. Finally, we describe the structure of the optimal synthesis, i. e., the set of minimizers for each terminal point in the Engel group.
Keywords: sub-Riemannian geometry, optimal control, Engel group, Maxwell strata, cut locus, mobile robot, Euler's elasticae.
Funding agency Grant number
Russian Science Foundation 17-11-01387
This work was supported by the Russian Science Foundation under grant 17-11-01387 and performed at the Ailamazyan Program Systems Institute of the Russian Academy of Sciences.
Received: 20.09.2017
Accepted: 21.10.2017
Bibliographic databases:
Document Type: Article
MSC: 53C17, 49K15
Language: English
Citation: Andrei A. Ardentov, Yuri L. Sachkov, “Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group”, Regul. Chaotic Dyn., 22:8 (2017), 909–936
Citation in format AMSBIB
\Bibitem{ArdSac17}
\by Andrei A. Ardentov, Yuri L. Sachkov
\paper Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 8
\pages 909--936
\mathnet{http://mi.mathnet.ru/rcd299}
\crossref{https://doi.org/10.1134/S1560354717080020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425981500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042411475}
Linking options:
  • https://www.mathnet.ru/eng/rcd299
  • https://www.mathnet.ru/eng/rcd/v22/i8/p909
  • This publication is cited in the following 21 articles:
    1. A. V. Greshnov, R. I. Zhukov, “Control Theory Problems and the Rashevskii–Chow Theorem on a Cartan Group”, Sib Math J, 65:5 (2024), 1096  crossref
    2. A. V. Greshnov, R. I. Zhukov, “Zadachi teorii upravleniya i teorema Rashevskogo — Chou na gruppe Kartana”, Sib. matem. zhurn., 65:5 (2024), 901–920  mathnet  crossref
    3. Alejandro Bravo-Doddoli, “Metric lines in the jet space”, Analysis and Geometry in Metric Spaces, 12:1 (2024)  crossref
    4. Yu. L. Sachkov, “Left-invariant optimal control problems on Lie groups that are integrable by elliptic functions”, Russian Math. Surveys, 78:1 (2023), 65–163  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. A. V. Greshnov, “The Agrachev–Barilari–Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$”, Proc. Steklov Inst. Math., 321 (2023), 97–106  mathnet  crossref  crossref
    6. I. A. Bogaevsky, “Front Asymptotics of a Flat Sub-Riemannian Structure on the Engel Distribution”, Proc. Steklov Inst. Math., 321 (2023), 54–68  mathnet  crossref  crossref  mathscinet
    7. Yuri Sachkov, Springer Optimization and Its Applications, 192, Introduction to Geometric Control, 2022, 47  crossref
    8. Yuri Sachkov, Springer Optimization and Its Applications, 192, Introduction to Geometric Control, 2022, 81  crossref
    9. A. V. Greshnov, R. I. Zhukov, “Horizontal joinability in canonical 3-step Carnot groups with corank 2 horizontal distributions”, Siberian Math. J., 62:4 (2021), 598–606  mathnet  crossref  crossref  isi  elib
    10. Yu. L. Sachkov, E. F. Sachkova, “Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6)”, Proc. Steklov Inst. Math., 315 (2021), 223–232  mathnet  crossref  crossref  isi
    11. Yu. L. Sachkov, A. Yu. Popov, “Sub-Riemannian Engel sphere”, Dokl. Math., 104:2 (2021), 301–305  mathnet  crossref  crossref  zmath  elib
    12. Yu. L. Sachkov, “Conjugate time in the sub-Riemannian problem on the Cartan group”, J. Dyn. Control Syst., 27:4 (2021), 709–751  crossref  mathscinet  isi  scopus
    13. Yu. L. Sachkov, E. F. Sachkova, “Sub-riemannian (2, 3, 5, 6)-structures”, Dokl. Math., 103:1 (2021), 61–65  mathnet  crossref  crossref  zmath  elib
    14. A. Greshnov, “Mathematical analysis - optimal horizontal joinability on the Engel group”, Rend. Lincei-Mat. Appl., 32:3 (2021), 535–547  crossref  mathscinet  isi  scopus
    15. A. V. Podobryaev, “Symmetries in left-invariant optimal control problems”, Sb. Math., 211:2 (2020), 275–290  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. V. N. Berestovskii, I. A. Zubareva, “Extremals of a left-invariant sub-finsler metric on the engel group”, Siberian Math. J., 61:4 (2020), 575–588  mathnet  crossref  crossref  isi  elib
    17. Andrey A. Ardentov, Yury L. Karavaev, Kirill S. Yefremov, “Euler Elasticas for Optimal Control of the Motion of Mobile Wheeled Robots: the Problem of Experimental Realization”, Regul. Chaotic Dyn., 24:3 (2019), 312–328  mathnet  crossref
    18. A. V. Podobryaev, “Symmetric Extremal Trajectories in Left-Invariant Optimal Control Problems”, Rus. J. Nonlin. Dyn., 15:4 (2019), 569–575  mathnet  crossref  elib
    19. D. I. Barrett, C. E. McLean, C. C. Remsing, “Control systems on the Engel group”, J. Dyn. Control Syst., 25:3 (2019), 377–402  crossref  mathscinet  zmath  isi  scopus
    20. F. Almalki, V. V. Kisil, “Geometric dynamics of a harmonic oscillator, arbitrary minimal uncertainty states and the smallest step 3 nilpotent Lie group”, J. Phys. A-Math. Theor., 52:1 (2019), 025301  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:273
    References:59
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025