Abstract:
In this paper we investigate the dynamics of a body with a flat base (cylinder) sliding on a horizontal rough plane. For analysis we use two approaches. In one of the approaches using a friction machine we determine the dependence of friction force on the velocity of motion of cylinders. In the other approach using a high-speed camera for video filming and the method of presentation of trajectories on a phase plane for analysis of results, we investigate the qualitative and quantitative behavior of the motion of cylinders on a horizontal plane. We compare the results obtained with theoretical and experimental results found earlier. In addition, we give a systematic review of the well-known experimental and theoretical results in this area.
The work of A. V. Borisov, I. S. Mamaev and T. B. Ivanova was carried out within the framework of the state assignment for institutions of higher education. The work of Yu. L. Karavaev was supported by the RFBR grant no. 15-38-20879 mol_a_ved. The work of N. N. Erdakova was supported by the RFBR grant no. 15-08-09261-a.
Citation:
Alexey V. Borisov, Yury L. Karavaev, Ivan S. Mamaev, Nadezhda N. Erdakova, Tatyana B. Ivanova, Valery V. Tarasov, “Experimental Investigation of the Motion of a Body with an Axisymmetric Base Sliding on a Rough Plane”, Regul. Chaotic Dyn., 20:5 (2015), 518–541
\Bibitem{BorKarMam15}
\by Alexey V. Borisov, Yury L. Karavaev, Ivan S. Mamaev, Nadezhda N. Erdakova, Tatyana B. Ivanova, Valery V. Tarasov
\paper Experimental Investigation of the Motion of a Body with an Axisymmetric Base Sliding on a Rough Plane
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 5
\pages 518--541
\mathnet{http://mi.mathnet.ru/rcd19}
\crossref{https://doi.org/10.1134/S1560354715050020}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3412543}
\zmath{https://zbmath.org/?q=an:06529972}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000362971400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944446581}
This publication is cited in the following 21 articles:
A. P. Ivanov, “On the Dynamics of a Biped upon a Moving Rough Plane”, Rus. J. Nonlin. Dyn., 20:1 (2024), 141–149
Goryacheva I.G., Zobova A.A., “Dynamics of Deformable Contacting Bodies With Sliding, Rolling, and Spinning”, Int. J. Mech. Sci., 216 (2022), 106981
A. V. Karapetyan, A. Y. Shamin, “On the movement of the Chaplygin sleigh on a horizontal plane with dry friction”, Acta Astronaut., 176 (2020), 733–740
T. B. Ivanova, “Non-holonomic rolling of a ball on the surface of a rotating cylinder”, ZAMM-Z. Angew. Math. Mech., 100:12 (2020), e202000067
A. A. Kireenkov, S. I. Zhavoronok, “Anisotropic combined dry friction in problems of pneumatics' dynamics”, J. Vib. Eng. Technol., 8:2, SI (2020), 365–372
A. A. Zobova, “Dry friction distributed over a contact patch between a rigid body and a visco-elastic plane”, Multibody Syst. Dyn., 45:2 (2019), 203–222
A. Galajdova, I. Virgala, M. Kelemen, L. Mikova, T. Liptak, T. Kelemenova, “Influence of pipe geometric deviation on bristled in-pipe mobile robot locomotion”, Int. J. Adv. Robot. Syst., 15:3 (2018)
O. Silantyeva, N. Dmitriev, “Motion of a thin elliptic plate under symmetric and asymmetric orthotropic friction forces”, Surf. Topogr.-Metrol. Prop., 6:1 (2018), 015004
A. V. Borisov, T. B. Ivanova, Yu. L. Karavaev, I. S. Mamaev, “Theoretical and experimental investigations of the rolling of a ball on a rotating plane (turntable)”, Eur. J. Phys., 39:6 (2018), 065001
Yu. L. Karavaev, A. V. Klekovkin, A. A. Kilin, “Dinamicheskaya model treniya kacheniya sfericheskikh tel po ploskosti bez proskalzyvaniya”, Nelineinaya dinam., 13:4 (2017), 599–609
R. Janos, M. Sukop, J. Semjon, M. Vagas, A. Galajdova, P. Tuleja, L. Koukolova, P. Marcinko, “Conceptual design of a leg-wheel chassis for rescue operations”, Int. J. Adv. Robot. Syst., 14:6 (2017), 1729881417743556
J. Semjon, R. Janos, M. Sukop, M. Vagas, J. Varga, D. Hroncova, A. Gmiterko, “Mutual comparison of developed actuators for robotic arms of service robots”, Int. J. Adv. Robot. Syst., 14:6 (2017), 1729881417743540
V. Alakshendra, Sh. S. Chiddarwar, “Simultaneous balancing and trajectory tracking control for an omnidirectional mobile robot with a cylinder using switching between two robust controllers”, Int. J. Adv. Robot. Syst., 14:6 (2017), 1729881417738728
Jaap Eldering, “Realizing Nonholonomic Dynamics as Limit of Friction Forces”, Regul. Chaotic Dyn., 21:4 (2016), 390–409
Yu. L. Karavaev, A. A. Kilin, “Nonholonomic dynamics and control of a spherical robot with an internal omniwheel platform: theory and experiments”, Proc. Steklov Inst. Math., 295 (2016), 158–167
T. B. Ivanova, N. N. Erdakova, Yu. L. Karavaev, “Experimental investigation of the dynamics of a brake shoe”, Dokl. Phys., 61:12 (2016), 611–614
A. P. Ivanov, N. N. Erdakova, “On a mechanical lens”, Int. J. Non-Linear Mech., 79 (2016), 115–121
Alexey V. Borisov, Ivan S. Mamaev, Nadezhda N. Erdakova, “Dynamics of a body sliding on a rough plane and supported at three points”, Theor. Appl. Mech., 43:2 (2016), 169–190
A. A. Zobova, “A review of models of distributed dry friction”, J. Appl. Math. Mech., 80:2 (2016), 141–148
Michał Szewc, Grzegorz Kudra, Jan Awrejcewicz, Springer Proceedings in Mathematics & Statistics, 182, Dynamical Systems: Theoretical and Experimental Analysis, 2016, 351