Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2015, Volume 20, Issue 5, Pages 542–552
DOI: https://doi.org/10.1134/S1560354715050032
(Mi rcd20)
 

This article is cited in 10 scientific papers (total in 10 papers)

Invariant Measures of Modified LR and L+R Systems

Božidar Jovanović

Mathematical Institute SANU, Kneza Mihaila 36, 11000, Belgrade, Serbia
Citations (10)
References:
Abstract: We introduce a class of dynamical systems having an invariant measure, the modifications of well-known systems on Lie groups: LR and L+R systems. As an example, we study a modified Veselova nonholonomic rigid body problem, considered as a dynamical system on the product of the Lie algebra so(n) with the Stiefel variety Vn,r, as well as the associated ϵL+R system on so(n)×Vn,r. In the 3-dimensional case, these systems model the nonholonomic problems of motion of a ball and a rubber ball over a fixed sphere.
Keywords: nonholonomic constraints, invariant measure, Chaplygin ball.
Funding agency Grant number
Ministry of Education, Science and Technical Development of Serbia 174020
The research was supported by the Serbian Ministry of Education and Science Project 174020 Geometry and Topology of Manifolds, Classical Mechanics, and Integrable Dynamical System.
Received: 28.06.2015
Bibliographic databases:
Document Type: Article
MSC: 37J60, 70F25, 70H45
Language: English
Citation: Božidar Jovanović, “Invariant Measures of Modified LR and L+R Systems”, Regul. Chaotic Dyn., 20:5 (2015), 542–552
Citation in format AMSBIB
\Bibitem{Jov15}
\by Bo{\v z}idar Jovanovi\'c
\paper Invariant Measures of Modified $\mathrm{LR}$ and $\mathrm{L+R}$ Systems
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 5
\pages 542--552
\mathnet{http://mi.mathnet.ru/rcd20}
\crossref{https://doi.org/10.1134/S1560354715050032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3412544}
\zmath{https://zbmath.org/?q=an:06529973}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000362971400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944446123}
Linking options:
  • https://www.mathnet.ru/eng/rcd20
  • https://www.mathnet.ru/eng/rcd/v20/i5/p542
  • This publication is cited in the following 10 articles:
    1. Vladimir Dragović, Borislav Gajić, Bozidar Jovanović, “Spherical and Planar Ball Bearings — a Study of Integrable Cases”, Regul. Chaotic Dyn., 28:1 (2023), 62–77  mathnet  crossref  mathscinet
    2. Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Gyroscopic Chaplygin Systems and Integrable Magnetic Flows on Spheres”, J Nonlinear Sci, 33:3 (2023)  crossref
    3. Vladimir Dragović, Borislav Gajić, Bozidar Jovanović, “Spherical and Planar Ball Bearings — Nonholonomic Systems with Invariant Measures”, Regul. Chaotic Dyn., 27:4 (2022), 424–442  mathnet  crossref  mathscinet
    4. Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Demchenko's nonholonomic case of a gyroscopic ball rolling without sliding over a sphere after his 1923 Belgrade doctoral thesis”, Theor. Appl. Mech., 47:2 (2020), 257–287  mathnet  crossref
    5. B. Gajić, B. Jovanović, “Two Integrable Cases of a Ball Rolling over a Sphere in $\mathbb{R}^n$”, Rus. J. Nonlin. Dyn., 15:4 (2019), 457–475  mathnet  crossref  elib
    6. Kurt M. Ehlers, Jair Koiller, “Cartan meets Chaplygin”, Theor. Appl. Mech., 46:1 (2019), 15–46  mathnet  crossref
    7. Božidar Jovanović, “Note on a ball rolling over a sphere: integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization”, Theor. Appl. Mech., 46:1 (2019), 97–108  mathnet  crossref
    8. B. Gajic, B. Jovanovic, “Nonholonomic connections, time reparametrizations, and integrability of the rolling ball over a sphere”, Nonlinearity, 32:5 (2019), 1675–1694  crossref  mathscinet  zmath  isi  scopus
    9. B. Jovanovic, “Rolling balls over spheres in $\mathbb{R}^n$”, Nonlinearity, 31:9 (2018), 4006–4030  crossref  mathscinet  zmath  isi  scopus
    10. B. Jovanovic, “Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems”, J. Geom. Mech., 10:2 (2018), 173–187  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:209
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025