Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 6, Pages 608–622
DOI: https://doi.org/10.1134/S156035471306004X
(Mi rcd152)
 

This article is cited in 5 scientific papers (total in 5 papers)

Commuting Foliations

Nguyen Tien Zung, Truong Hong Minh

Institut de Mathematiques de Toulouse, UMR5219, Universite Toulouse 3, France
Citations (5)
References:
Abstract: The aim of this paper is to extend the notion of commutativity of vector fields to the category of singular foliations using Nambu structures, i.e., integrable multi-vector fields. We will classify the relationship between singular foliations and Nambu structures and show some basic results about commuting Nambu structures.
Keywords: commuting foliations, integrable differential forms, Nambu structures.
Received: 04.03.2013
Accepted: 21.10.2013
Bibliographic databases:
Document Type: Article
MSC: 53C12, 37C85, 32S65
Language: English
Citation: Nguyen Tien Zung, Truong Hong Minh, “Commuting Foliations”, Regul. Chaotic Dyn., 18:6 (2013), 608–622
Citation in format AMSBIB
\Bibitem{ZunMin13}
\by Nguyen Tien Zung, Truong Hong Minh
\paper Commuting Foliations
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 6
\pages 608--622
\mathnet{http://mi.mathnet.ru/rcd152}
\crossref{https://doi.org/10.1134/S156035471306004X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3146582}
\zmath{https://zbmath.org/?q=an:1287.53022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329108900004}
Linking options:
  • https://www.mathnet.ru/eng/rcd152
  • https://www.mathnet.ru/eng/rcd/v18/i6/p608
  • This publication is cited in the following 5 articles:
    1. T. S. Ratiu, Nguyen Tien Zung, “Integrable systems in planar robotics”, Chebyshevskii sb., 21:2 (2020), 320–340  mathnet  crossref
    2. Monnier Ph., Nguyen Tien Zung, “Deformation of Singular Foliations, 1: Local Deformation Cohomology”, C. R. Math., 358:3 (2020), 273–283  crossref  mathscinet  zmath  isi  scopus
    3. Ryvkin L., Wurzbacher T., “An Invitation to Multisymplectic Geometry”, J. Geom. Phys., 142 (2019), 9–36  crossref  mathscinet  zmath  isi  scopus
    4. Nguyen Tien Zung, “A conceptual approach to the problem of action-angle variables”, Arch. Ration. Mech. Anal., 229:2 (2018), 789–833  crossref  mathscinet  zmath  isi  scopus
    5. Stefan Rosemann, Konrad Schöbel, “Open problems in the theory of finite-dimensional integrable systems and related fields”, Journal of Geometry and Physics, 87 (2015), 396  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:261
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025