Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 6, Pages 623–655
DOI: https://doi.org/10.1134/S1560354713060051
(Mi rcd153)
 

This article is cited in 28 scientific papers (total in 28 papers)

Polynomial Entropies and Integrable Hamiltonian Systems

Jean-Pierre Marco

Université Paris 6, 4 place Jussieu, 75252 Paris cedex 05
Citations (28)
References:
Abstract: We introduce two numerical conjugacy invariants of dynamical systems — the polynomial entropy and the weak polynomial entropy — which are well-suited for the study of "completely integrable" Hamiltonian systems. These invariants describe the polynomial growth rate of the number of balls (for the usual "dynamical" distances) of covers of the ambient space. We give explicit examples of computation of these polynomial entropies for generic Hamiltonian systems on surfaces.
Keywords: dynamical complexity, entropy, integrability, Morse Hamiltonians.
Funding agency Grant number
Agence Nationale de la Recherche JC0541465
The preparation of this paper was motivated and made possible by the rich interaction initiated by the ANR Intégrabilité réelle et complexe en Mécanique Hamiltonienne (JC0541465).
Received: 23.09.2013
Accepted: 05.11.2013
Bibliographic databases:
Document Type: Article
MSC: 70H06, 37J05, 37G25
Language: English
Citation: Jean-Pierre Marco, “Polynomial Entropies and Integrable Hamiltonian Systems”, Regul. Chaotic Dyn., 18:6 (2013), 623–655
Citation in format AMSBIB
\Bibitem{Mar13}
\by Jean-Pierre Marco
\paper Polynomial Entropies and Integrable Hamiltonian Systems
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 6
\pages 623--655
\mathnet{http://mi.mathnet.ru/rcd153}
\crossref{https://doi.org/10.1134/S1560354713060051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3146583}
\zmath{https://zbmath.org/?q=an:1286.70022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329108900005}
Linking options:
  • https://www.mathnet.ru/eng/rcd153
  • https://www.mathnet.ru/eng/rcd/v18/i6/p623
  • This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:269
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024