Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 6, Pages 623–655
DOI: https://doi.org/10.1134/S1560354713060051
(Mi rcd153)
 

This article is cited in 30 scientific papers (total in 30 papers)

Polynomial Entropies and Integrable Hamiltonian Systems

Jean-Pierre Marco

Université Paris 6, 4 place Jussieu, 75252 Paris cedex 05
Citations (30)
References:
Abstract: We introduce two numerical conjugacy invariants of dynamical systems — the polynomial entropy and the weak polynomial entropy — which are well-suited for the study of "completely integrable" Hamiltonian systems. These invariants describe the polynomial growth rate of the number of balls (for the usual "dynamical" distances) of covers of the ambient space. We give explicit examples of computation of these polynomial entropies for generic Hamiltonian systems on surfaces.
Keywords: dynamical complexity, entropy, integrability, Morse Hamiltonians.
Funding agency Grant number
Agence Nationale de la Recherche JC0541465
The preparation of this paper was motivated and made possible by the rich interaction initiated by the ANR Intégrabilité réelle et complexe en Mécanique Hamiltonienne (JC0541465).
Received: 23.09.2013
Accepted: 05.11.2013
Bibliographic databases:
Document Type: Article
MSC: 70H06, 37J05, 37G25
Language: English
Citation: Jean-Pierre Marco, “Polynomial Entropies and Integrable Hamiltonian Systems”, Regul. Chaotic Dyn., 18:6 (2013), 623–655
Citation in format AMSBIB
\Bibitem{Mar13}
\by Jean-Pierre Marco
\paper Polynomial Entropies and Integrable Hamiltonian Systems
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 6
\pages 623--655
\mathnet{http://mi.mathnet.ru/rcd153}
\crossref{https://doi.org/10.1134/S1560354713060051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3146583}
\zmath{https://zbmath.org/?q=an:1286.70022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329108900005}
Linking options:
  • https://www.mathnet.ru/eng/rcd153
  • https://www.mathnet.ru/eng/rcd/v18/i6/p623
  • This publication is cited in the following 30 articles:
    1. Robert Cardona, Eva Miranda, Daniel Peralta-Salas, “Towards a Fluid Computer”, Found Comput Math, 2025  crossref
    2. Samuel Roth, Zuzana Roth, Ľubomír Snoha, “Rigidity and flexibility of polynomial entropy”, Advances in Mathematics, 443 (2024), 109591  crossref
    3. Xiaofang Luo, “Topological Entropy of Iterated Set-Valued Dynamical Systems”, Qual. Theory Dyn. Syst., 23:4 (2024)  crossref
    4. Lei Liu, Cao Zhao, “Multifractal Analysis of Local Polynomial Entropies”, Front. Math, 19:1 (2024), 89  crossref
    5. Bin Zhang, Deyu Meng, Dongmei Peng, Junjie Zhang, “Billingsley type theorem of Bowen polynomial entropy for fixed-point free flows”, Asian-European J. Math., 17:11 (2024)  crossref
    6. Flavien Grycan-Gérard, Jean-Pierre Marco, “Polynomial Entropy and Polynomial Torsion for Fibered Systems”, Regul. Chaotic Dyn., 28:4-5 (2023), 613–627  mathnet  crossref
    7. Gabriel Fuhrmann, Maik Gröger, Tobias Jäger, Dominik Kwietniak, “Amorphic complexity of group actions with applications to quasicrystals”, Trans. Amer. Math. Soc., 2023  crossref
    8. Maša Ɖorić, Jelena Katić, “Polynomial Entropy of Induced Maps of Circle and Interval Homeomorphisms”, Qual. Theory Dyn. Syst., 22:3 (2023)  crossref
    9. Lei Liu, Xiao Yao Zhou, “Polynomial Entropy of Amenable Group Actions for Noncompact Sets”, Acta. Math. Sin.-English Ser., 39:7 (2023), 1351  crossref
    10. M. Ðorić, J. Katić, B. Lasković, “On Polynomial Entropy Of Induced Maps On Symmetric Products”, Acta Math. Hungar., 171:2 (2023), 334  crossref
    11. Javier Correa, Hellen de Paula, “Polynomial entropy of Morse-Smale diffeomorphisms on surfaces”, Bulletin des Sciences Mathématiques, 182 (2023), 103225  crossref
    12. Javier Correa, Enrique R. Pujals, “ORDERS OF GROWTH AND GENERALIZED ENTROPY”, J. Inst. Math. Jussieu, 22:4 (2023), 1581  crossref
    13. Lei Liu, Dongmei Peng, “Variational principle for polynomial entropy on subsets of free semigroup actions”, Journal of Difference Equations and Applications, 29:5 (2023), 603  crossref
    14. Lei Liu, Cao Zhao, “Polynomial entropy of nonautonomous dynamical systems for noncompact sets”, Journal of Mathematical Analysis and Applications, 509:2 (2022), 125974  crossref
    15. Liu L. Zhao C., “Polynomial Entropy of Subsets For Free Semigroup Actions”, J. Dyn. Control Syst., 2021  crossref  isi  scopus
    16. Peric M., “Polynomial Entropy of the Logistic Map”, Stud. Sci. Math. Hung., 58:2 (2021), 206–215  crossref  mathscinet  isi  scopus
    17. Fan Yu.-W. Fu L. Ouchi G., “Categorical Polynomial Entropy”, Adv. Math., 383 (2021), 107655  crossref  mathscinet  isi  scopus
    18. Gomes J.B., Dias Carneiro M.J., “Polynomial Entropy For Interval Maps and Lap Number”, Qual. Theor. Dyn. Syst., 20:1 (2021), 21  crossref  mathscinet  isi  scopus
    19. Cantat S. Paris-Romaskevich O., “Automorphisms of Compact Kahler Manifolds With Slow Dynamics”, Trans. Am. Math. Soc., 374:2 (2021), 1351–1389  crossref  mathscinet  isi  scopus
    20. Katic J. Peric M., “On the Polynomial Entropy For Morse Gradient Systems”, Math. Slovaca, 69:3 (2019), 611–624  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:291
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025