Abstract:
We introduce two numerical conjugacy invariants of dynamical systems — the polynomial entropy and the weak polynomial entropy — which are well-suited for the study of "completely integrable" Hamiltonian systems. These invariants describe the polynomial growth rate of the number of balls (for the usual "dynamical" distances) of covers of the ambient space. We give explicit examples of computation of these polynomial entropies for generic Hamiltonian systems on surfaces.
The preparation of this paper was motivated and made possible by the rich interaction initiated by the ANR Intégrabilité réelle et complexe en Mécanique Hamiltonienne (JC0541465).
\Bibitem{Mar13}
\by Jean-Pierre Marco
\paper Polynomial Entropies and Integrable Hamiltonian Systems
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 6
\pages 623--655
\mathnet{http://mi.mathnet.ru/rcd153}
\crossref{https://doi.org/10.1134/S1560354713060051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3146583}
\zmath{https://zbmath.org/?q=an:1286.70022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329108900005}
Linking options:
https://www.mathnet.ru/eng/rcd153
https://www.mathnet.ru/eng/rcd/v18/i6/p623
This publication is cited in the following 30 articles:
Robert Cardona, Eva Miranda, Daniel Peralta-Salas, “Towards a Fluid Computer”, Found Comput Math, 2025
Samuel Roth, Zuzana Roth, Ľubomír Snoha, “Rigidity and flexibility of polynomial entropy”, Advances in Mathematics, 443 (2024), 109591
Xiaofang Luo, “Topological Entropy of Iterated Set-Valued Dynamical Systems”, Qual. Theory Dyn. Syst., 23:4 (2024)
Lei Liu, Cao Zhao, “Multifractal Analysis of Local Polynomial Entropies”, Front. Math, 19:1 (2024), 89
Bin Zhang, Deyu Meng, Dongmei Peng, Junjie Zhang, “Billingsley type theorem of Bowen polynomial entropy for fixed-point free flows”, Asian-European J. Math., 17:11 (2024)
Flavien Grycan-Gérard, Jean-Pierre Marco, “Polynomial Entropy and Polynomial Torsion for Fibered Systems”, Regul. Chaotic Dyn., 28:4-5 (2023), 613–627
Gabriel Fuhrmann, Maik Gröger, Tobias Jäger, Dominik Kwietniak, “Amorphic complexity of group actions with applications to quasicrystals”, Trans. Amer. Math. Soc., 2023
Maša Ɖorić, Jelena Katić, “Polynomial Entropy of Induced Maps of Circle and Interval Homeomorphisms”, Qual. Theory Dyn. Syst., 22:3 (2023)
Lei Liu, Xiao Yao Zhou, “Polynomial Entropy of Amenable Group Actions for Noncompact Sets”, Acta. Math. Sin.-English Ser., 39:7 (2023), 1351
M. Ðorić, J. Katić, B. Lasković, “On Polynomial Entropy Of Induced Maps On Symmetric Products”, Acta Math. Hungar., 171:2 (2023), 334
Javier Correa, Hellen de Paula, “Polynomial entropy of Morse-Smale diffeomorphisms on surfaces”, Bulletin des Sciences Mathématiques, 182 (2023), 103225
Javier Correa, Enrique R. Pujals, “ORDERS OF GROWTH AND GENERALIZED ENTROPY”, J. Inst. Math. Jussieu, 22:4 (2023), 1581
Lei Liu, Dongmei Peng, “Variational principle for polynomial entropy on subsets of free semigroup actions”, Journal of Difference Equations and Applications, 29:5 (2023), 603
Lei Liu, Cao Zhao, “Polynomial entropy of nonautonomous dynamical systems for noncompact sets”, Journal of Mathematical Analysis and Applications, 509:2 (2022), 125974
Liu L. Zhao C., “Polynomial Entropy of Subsets For Free Semigroup Actions”, J. Dyn. Control Syst., 2021
Peric M., “Polynomial Entropy of the Logistic Map”, Stud. Sci. Math. Hung., 58:2 (2021), 206–215
Fan Yu.-W. Fu L. Ouchi G., “Categorical Polynomial Entropy”, Adv. Math., 383 (2021), 107655
Gomes J.B., Dias Carneiro M.J., “Polynomial Entropy For Interval Maps and Lap Number”, Qual. Theor. Dyn. Syst., 20:1 (2021), 21
Cantat S. Paris-Romaskevich O., “Automorphisms of Compact Kahler Manifolds With Slow Dynamics”, Trans. Am. Math. Soc., 374:2 (2021), 1351–1389
Katic J. Peric M., “On the Polynomial Entropy For Morse Gradient Systems”, Math. Slovaca, 69:3 (2019), 611–624