Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 6, Pages 600–607
DOI: https://doi.org/10.1134/S1560354713060038
(Mi rcd151)
 

This article is cited in 2 scientific papers (total in 2 papers)

MICZ-Kepler: Dynamics on the Cone over $SO(n)$

Richard Montgomery

Dept. of Mathematics, University of California, Santa Cruz, CA, USA
Citations (2)
References:
Abstract: We show that the $n$-dimensional MICZ-Kepler system arises from symplectic reduction of the "Kepler problem" on the cone over the rotation group $SO(n)$. As a corollary we derive an elementary formula for the general solution of the MICZ-Kepler problem. The heart of the computation is the observation that the additional MICZ-Kepler potential, $|\phi|^2/r^2$, agrees with the rotational part of the cone’s kinetic energy.
Keywords: Kepler problem, MICZ-K system, co-adjoint orbit, Sternberg phase space, symplectic reduction, superintegrable systems.
Funding agency Grant number
National Science Foundation DMS-1305844
I gratefully acknowledge support by the US NSF grant number DMS-1305844.
Received: 09.08.2013
Accepted: 29.10.2013
Bibliographic databases:
Document Type: Article
MSC: 70Hxx, 37J35, 53D20
Language: English
Citation: Richard Montgomery, “MICZ-Kepler: Dynamics on the Cone over $SO(n)$”, Regul. Chaotic Dyn., 18:6 (2013), 600–607
Citation in format AMSBIB
\Bibitem{Mon13}
\by Richard Montgomery
\paper MICZ-Kepler: Dynamics on the Cone over $SO(n)$
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 6
\pages 600--607
\mathnet{http://mi.mathnet.ru/rcd151}
\crossref{https://doi.org/10.1134/S1560354713060038}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3146581}
\zmath{https://zbmath.org/?q=an:1286.70012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329108900003}
Linking options:
  • https://www.mathnet.ru/eng/rcd151
  • https://www.mathnet.ru/eng/rcd/v18/i6/p600
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:148
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024