Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 6, Pages 585–599
DOI: https://doi.org/10.1134/S1560354713060026
(Mi rcd150)
 

This article is cited in 6 scientific papers (total in 6 papers)

Stable Periodic Solutions in the Forced Pendulum Equation

Rafael Ortega

Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
Citations (6)
References:
Abstract: Consider the pendulum equation with an external periodic force and an appropriate condition on the length parameter. It is proved that there exists at least one stable periodic solution for almost every external force with zero average. The stability is understood in the Lyapunov sense.
Keywords: Lyapunov stability, forced pendulum, prevalence, periodic solution, regular value, discriminant.
Funding agency Grant number
Ministerio de Ciencia e Innovación de España MTM 2011-23652
Supported by project MTM 2011-23652, Ministerio de Ciencia e Innovación, Spain.
Received: 15.05.2013
Accepted: 04.10.2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: Rafael Ortega, “Stable Periodic Solutions in the Forced Pendulum Equation”, Regul. Chaotic Dyn., 18:6 (2013), 585–599
Citation in format AMSBIB
\Bibitem{Ort13}
\by Rafael Ortega
\paper Stable Periodic Solutions in the Forced Pendulum Equation
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 6
\pages 585--599
\mathnet{http://mi.mathnet.ru/rcd150}
\crossref{https://doi.org/10.1134/S1560354713060026}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3146580}
\zmath{https://zbmath.org/?q=an:1303.34031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329108900002}
Linking options:
  • https://www.mathnet.ru/eng/rcd150
  • https://www.mathnet.ru/eng/rcd/v18/i6/p585
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025