Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2021, Volume 26, Issue 6, Pages 742–755
DOI: https://doi.org/10.1134/S1560354721060113
(Mi rcd1143)
 

This article is cited in 1 scientific paper (total in 1 paper)

Regular Papers

Strongly Reversible Flows on Connected Manifolds

Khadija Ben Rejeb

University of Sousse, Higher School of Sciences and Technologie of Hammam Sousse, Lamine Abassi, Hammam-Sousse ul., 4011 Sousse, Tunisia
Citations (1)
References:
Abstract: Let $G = \{h_t \ | \ t \in \mathbb R\}$ be a flow of homeomorphisms of a connected $n$-manifold and let $L(G)$ be its limit set. The flow $G$ is said to be strongly reversed by a reflection $R$ if $h_{-t} = R h_t R$ for all $t \in \mathbb R$. In this paper, we study the dynamics of positively equicontinuous strongly reversible flows. If $L(G)$ is nonempty, we discuss the existence of symmetric periodic orbits, and for $n=3$ we prove that such flows must be periodic. If $L(G)$ is empty, we show that $G$ positively equicontinuous implies $G$ strongly reversible and $G$ strongly reversible implies $G$ parallelizable with global section the fixed point set $Fix(R)$.
Keywords: strongly reversible, flow of homeomorphisms, positively equicontinuous, periodic orbit, parallelizable, limit set.
Received: 01.02.2021
Accepted: 13.08.2021
Bibliographic databases:
Document Type: Article
Language: English
Citation: Khadija Ben Rejeb, “Strongly Reversible Flows on Connected Manifolds”, Regul. Chaotic Dyn., 26:6 (2021), 742–755
Citation in format AMSBIB
\Bibitem{Rej21}
\by Khadija Ben Rejeb
\paper Strongly Reversible Flows on Connected Manifolds
\jour Regul. Chaotic Dyn.
\yr 2021
\vol 26
\issue 6
\pages 742--755
\mathnet{http://mi.mathnet.ru/rcd1143}
\crossref{https://doi.org/10.1134/S1560354721060113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000727365900011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120800235}
Linking options:
  • https://www.mathnet.ru/eng/rcd1143
  • https://www.mathnet.ru/eng/rcd/v26/i6/p742
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:112
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024