Abstract:
We show that every parabolic orbit of a two-degree-of-freedom integrable system admits a $C^\infty$-smooth Hamiltonian
circle action, which is persistent under small integrable $C^\infty$ perturbations.
We deduce from this result the structural stability of parabolic orbits and show that they are all smoothly
equivalent (in the non-symplectic sense) to a standard model. As a corollary, we obtain similar results for cuspidal tori. Our proof is based on showing that
every symplectomorphism of a neighbourhood of a parabolic point preserving the first integrals of motion is a Hamiltonian whose generating function is smooth and constant on the
connected components of the common level sets.
Keywords:
Liouville integrability, parabolic orbit, circle action, structural stability, normal
forms.
Citation:
Elena A. Kudryavtseva, Nikolay N. Martynchuk, “Existence of a Smooth Hamiltonian Circle Action
near Parabolic Orbits and Cuspidal Tori”, Regul. Chaotic Dyn., 26:6 (2021), 732–741
\Bibitem{KudMar21}
\by Elena A. Kudryavtseva, Nikolay N. Martynchuk
\paper Existence of a Smooth Hamiltonian Circle Action
near Parabolic Orbits and Cuspidal Tori
\jour Regul. Chaotic Dyn.
\yr 2021
\vol 26
\issue 6
\pages 732--741
\mathnet{http://mi.mathnet.ru/rcd1142}
\crossref{https://doi.org/10.1134/S1560354721060101}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000727365900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118690794}
Linking options:
https://www.mathnet.ru/eng/rcd1142
https://www.mathnet.ru/eng/rcd/v26/i6/p732
This publication is cited in the following 7 articles:
Yannick Gullentops, Sonja Hohloch, Trends in Mathematics, 5, Women in Analysis and PDE, 2024, 187
E. A. Kudryavtseva, M. V. Onufrienko, “Classification of Singularities of Smooth Functions with a Finite Cyclic Symmetry Group”, Russ. J. Math. Phys., 30:1 (2023), 76
Joaquim Brugués, Sonja Hohloch, Pau Mir, Eva Miranda, “Constructions of b-semitoric systems”, Journal of Mathematical Physics, 64:7 (2023)
A. T. Fomenko, V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979
Elena A. Kudryavtseva, “Hidden toric symmetry and structural stability of singularities in integrable systems”, European Journal of Mathematics, 8:4 (2022), 1487
E. A. Kudryavtseva, A. A. Oshemkov, “Structurally Stable Nondegenerate Singularities of Integrable Systems”, Russ. J. Math. Phys., 29:1 (2022), 57
S. S. Nikolaenko, “Topologicheskaya klassifikatsiya nekompaktnykh 3-atomov s deistviem okruzhnosti”, Chebyshevskii sb., 22:5 (2021), 185–197