Abstract:
This paper addresses the problem of a spherical robot having an axisymmetric pendulum drive and rolling without slipping on a vibrating plane. It is shown that this system admits partial solutions (steady rotations) for which the pendulum rotates about its vertical symmetry axis. Special attention is given to problems of stability and stabilization of these solutions. An analysis of the constraint reaction is performed, and parameter regions are identified in which a stabilization of the spherical robot is possible without it losing contact with the plane. It is shown that the partial solutions can be stabilized by varying the angular velocity of rotation of the pendulum about its symmetry axis, and that the rotation of the pendulum is a necessary condition for stabilization without the robot losing contact with the plane.
This work was carried out at the Ural Mathematical Center within the framework of the state
assignment of the Ministry of Science and Higher Education of the Russian Federation (project
FEWS-2020-0009).
Citation:
Alexander A. Kilin, Elena N. Pivovarova, “Stability and Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base”, Regul. Chaotic Dyn., 25:6 (2020), 729–752
\Bibitem{KilPiv20}
\by Alexander A. Kilin, Elena N. Pivovarova
\paper Stability and Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 6
\pages 729--752
\mathnet{http://mi.mathnet.ru/rcd1096}
\crossref{https://doi.org/10.1134/S1560354720060155}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4184424}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000596572500015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097253133}
Linking options:
https://www.mathnet.ru/eng/rcd1096
https://www.mathnet.ru/eng/rcd/v25/i6/p729
This publication is cited in the following 14 articles: