Loading [MathJax]/jax/output/CommonHTML/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2020, Volume 25, Issue 6, Pages 707–715
DOI: https://doi.org/10.1134/S1560354720060131
(Mi rcd1092)
 

This article is cited in 13 scientific papers (total in 13 papers)

Dynamics of the Tippe Top on a Vibrating Base

Alexey V. Borisovab, Alexander P. Ivanovba

a National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, 115409 Moscow, Russia
b Moscow Institute of Physics and Technology, Inststitutskii per. 9, 141700 Dolgoprudnyi, Russia
Citations (13)
References:
Abstract: This paper studies the conditions under which the tippe top inverts in the presence of vibrations of the base along the vertical. A vibrational potential is constructed by averaging and it is shown that, when this potential is added to the system, the Jellett integral is preserved. This makes it possible to apply the modified Routh method and to find the effective potential to whose critical points permanent rotations or regular precessions of the tippe top correspond. Tippe top inversion is possible for a sufficiently large initial angular velocity under the condition that spinning with the lowest position of the center of gravity is unstable, spinning with the highest position of the center of gravity is stable, and that there are no precessions. Cases are found in which there is no inversion in the absence of vibrations, but it can be brought about by a suitable choice of the mean value of the squared velocity of the base. In particular, this type includes a ball with a spherical cavity filled with a denser substance.
Keywords: tippe top, dry friction, Jellett integral.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00335
18-29-10051
The work is supported by the Russion Foundation for Basic Research (projects 18-01-00335, 18-29-10051) and Program 5 Top 100.
Received: 14.09.2020
Accepted: 30.10.2020
Bibliographic databases:
Document Type: Article
MSC: 70E50, 70F40
Language: English
Citation: Alexey V. Borisov, Alexander P. Ivanov, “Dynamics of the Tippe Top on a Vibrating Base”, Regul. Chaotic Dyn., 25:6 (2020), 707–715
Citation in format AMSBIB
\Bibitem{BorIva20}
\by Alexey V. Borisov, Alexander P. Ivanov
\paper Dynamics of the Tippe Top on a Vibrating Base
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 6
\pages 707--715
\mathnet{http://mi.mathnet.ru/rcd1092}
\crossref{https://doi.org/10.1134/S1560354720060131}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4184422}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000596572500013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097212301}
Linking options:
  • https://www.mathnet.ru/eng/rcd1092
  • https://www.mathnet.ru/eng/rcd/v25/i6/p707
  • This publication is cited in the following 13 articles:
    1. Pradyumna Kumar Sahoo, Shyamal Chatterjee, “Effects and applications of non-resonant high-frequency excitation on nonlinear systems: a literature review”, Nonlinear Dyn, 2024  crossref
    2. D. D. Kulminskiy, M. V. Malyshev, “Experimental Study of the Accuracy of a Pendulum Clock with a Vibrating Pivot Point”, Rus. J. Nonlin. Dyn., 20:4 (2024), 553–563  mathnet  crossref
    3. Alexander A. Kilin, Tatiana B. Ivanova, Elena N. Pivovarova, “Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base Using Feedback”, Regul. Chaotic Dyn., 28:6 (2023), 888–905  mathnet  crossref
    4. Simon Sailer, Remco I. Leine, “Heteroclinic bifurcation analysis of the tippedisk through the use of Melnikov theory”, Proc. R. Soc. A., 479:2275 (2023)  crossref
    5. Alexander A. Kilin, Elena N. Pivovarova, “Stability of Vertical Rotations of an Axisymmetric Ellipsoid on a Vibrating Plane”, Mathematics, 11:18 (2023), 3948  crossref
    6. Alexey V. Borisov, Alexander P. Ivanov, “A Top on a Vibrating Base: New Integrable Problem of Nonholonomic Mechanics”, Regul. Chaotic Dyn., 27:1 (2022), 2–10  mathnet  crossref  mathscinet
    7. Ivan A. Bizyaev, Ivan S. Mamaev, “Permanent Rotations in Nonholonomic Mechanics. Omnirotational Ellipsoid”, Regul. Chaotic Dyn., 27:6 (2022), 587–612  mathnet  crossref  mathscinet
    8. Alexander A. Kilin, Elena N. Pivovarova, “Motion control of the spherical robot rolling on a vibrating plane”, Applied Mathematical Modelling, 109 (2022), 492  crossref
    9. Adrián Ruiz, Cláudio H. C. Costa Basquerotto, “Reduced motion equations of an axisymmetric body spinning on a horizontal surface via Lie symmetries”, Acta Mech, 233:9 (2022), 3853  crossref
    10. Alexander A. Kilin, Elena N. Pivovarova, “A Particular Integrable Case in the Nonautonomous Problem of a Chaplygin Sphere Rolling on a Vibrating Plane”, Regul. Chaotic Dyn., 26:6 (2021), 775–786  mathnet  crossref
    11. S. Sailer, R. I. Leine, “Singularly perturbed dynamics of the tippedisk”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 477:2256 (2021), 20210536  crossref  mathscinet  isi
    12. S. Sailer, R. I. Leine, “Model reduction of the tippedisk: a path to the full analysis”, Nonlinear Dyn., 105:3 (2021), 1955–1975  crossref  isi  scopus
    13. Alexander A. Kilin, Elena N. Pivovarova, “Stability and Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base”, Regul. Chaotic Dyn., 25:6 (2020), 729–752  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:189
    References:54
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025