Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2020, Volume 25, Issue 6, Pages 689–706
DOI: https://doi.org/10.1134/S156035472006012X
(Mi rcd1091)
 

This article is cited in 9 scientific papers (total in 9 papers)

Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass

Elizaveta M. Artemovaa, Yury L. Karavaevb, Ivan S. Mamaevb, Evgeny V. Vetchanina

a Udmurt State University, ul. Universitetskaya 1, 426034 Izhevsk, Russia
b Kalashnikov Izhevsk State Technical University, ul. Studencheskaya 7, 426069 Izhevsk, Russia
Citations (9)
References:
Abstract: The motion of a spherical robot with periodically changing moments of inertia, internal rotors and a displaced center of mass is considered. It is shown that, under some restrictions on the displacement of the center of mass, the system of interest features chaotic dynamics due to separatrix splitting. A stability analysis is made of the upper equilibrium point of the ball and of the periodic solution arising in its neighborhood, in the case of periodic rotation of the rotors. It is shown that the lower equilibrium point can become unstable in the case of fixed rotors and periodically changing moments of inertia.
Keywords: nonholonomic constraint, rubber rolling, unbalanced ball, rolling on a plane.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation FEWS-2020-0009
FZZN-2020-0011
Russian Science Foundation 18-71-00096
18-71-00111
The work of E.M.Artemova (Section 3) was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of Russia (Project FEWS-2020-0009). The work of Yu. L. Karavaev (Introduction and Section 2) was supported by the Russian Science Foundation under grant 18-71-00096. The work of I. S.Mamaev (Section 5) was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of Russia (Project FZZN-2020-0011) The work of E.V.Vetchanin (Section 4) was supported by the Russian Science Foundation under grant 18-71-00111.
Received: 15.04.2020
Accepted: 12.05.2020
Bibliographic databases:
Document Type: Article
MSC: 37J60, 37C60
Language: English
Citation: Elizaveta M. Artemova, Yury L. Karavaev, Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass”, Regul. Chaotic Dyn., 25:6 (2020), 689–706
Citation in format AMSBIB
\Bibitem{ArtKarMam20}
\by Elizaveta M. Artemova, Yury L. Karavaev, Ivan S. Mamaev, Evgeny V. Vetchanin
\paper Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 6
\pages 689--706
\mathnet{http://mi.mathnet.ru/rcd1091}
\crossref{https://doi.org/10.1134/S156035472006012X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4184421}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000596572500012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097253960}
Linking options:
  • https://www.mathnet.ru/eng/rcd1091
  • https://www.mathnet.ru/eng/rcd/v25/i6/p689
  • This publication is cited in the following 9 articles:
    1. Alexander A. Kilin, Elena N. Pivovarova, “Bifurcation analysis of the problem of a “rubber” ellipsoid of revolution rolling on a plane”, Nonlinear Dyn, 2024  crossref
    2. V. D. Anisimov, A. G. Egorov, A. N. Nuriev, O. N. Zaitseva, “Propulsive Motion of Cylindrical Vibration-Driven Robot in a Viscous Fluid”, jour, 166:3 (2024), 277  crossref
    3. A. V. Klekovkin, Yu. L. Karavaev, A. V. Nazarov, “Stabilization of a Spherical Robot with an Internal Pendulum During Motion on an Oscillating Base”, Rus. J. Nonlin. Dyn., 20:5 (2024), 845–858  mathnet  crossref
    4. Ivan A. Bizyaev, Ivan S. Mamaev, “Roller Racer with Varying Gyrostatic Momentum: Acceleration Criterion and Strange Attractors”, Regul. Chaotic Dyn., 28:1 (2023), 107–130  mathnet  crossref  mathscinet
    5. E. M. Artemova, A. A. Kilin, Yu. V. Korobeinikova, “Issledovanie orbitalnoi ustoichivosti pryamolineinykh kachenii roller-reisera po vibriruyuschei ploskosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:4 (2022), 615–629  mathnet  crossref  mathscinet
    6. E. V. Vetchanin, I. S. Mamaev, “Chislennyi analiz periodicheskikh upravlenii vodnogo robota neizmennoi formy”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:4 (2022), 644–660  mathnet  crossref  mathscinet
    7. Alexander P. Ivanov, “Singularities in the rolling motion of a spherical robot”, International Journal of Non-Linear Mechanics, 145 (2022), 104061  crossref
    8. Alexander A. Kilin, Elena N. Pivovarova, “Motion control of the spherical robot rolling on a vibrating plane”, Applied Mathematical Modelling, 109 (2022), 492  crossref
    9. Evgeny V. Vetchanin, 2021 International Conference “Nonlinearity, Information and Robotics” (NIR), 2021, 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:198
    References:38
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025