|
|
Contemporary methods in approximation theory and complex analysis
November 16, 2023 11:00–12:00, Moscow, Steklov Mathematical Institute of RAS (8 Gubkina)
|
|
|
|
|
|
Time-frequency analysis. Lecture 1
Yu. S. Belov Saint-Petersburg State University, Department of Mathematics and Computer Science
|
Video records: |
|
MP4 |
3,354.6 Mb |
Number of views: |
This page: | 209 | Video files: | 62 | Youtube Live: | |
Photo Gallery
|
References
-
K. Grochenig, Foundations of Time-Frequency Analysis, Applied and Numerical Harmonic Analysis (ANHA), Birkhauser, Boston, MA, 2001
-
C. Heil, “History and evolution of the density theorem for Gabor frames”, J. Fourier Anal. Appl, 13:2 (2007), 113–166
-
A. Ron and Z. Shen, “Weyl–Heisenberg frames and Riesz bases in $L^2(\mathbb R^d)$”, Duke Math. J., 89:2 (1997), 237–282
-
K. Seip, “Density theorems for sampling and interpolation in the Bargmann–Fock space. I”, 429, 1992, 91–106
-
K. Grochenig, J. Stockler, “Gabor frames and totally positive functions”, Duke Mathematical Journal, 162:6 (2011), 1003–1031
-
K. Grochenig, J.L. Romero, J. Stockler, “Sampling theorems for shift-invariant spaces, Gabor frames, and totally positive functions”, Inventiones mathematicae, 211:3 (2016), 1119–1148
-
Yu. Belov, A. Kulikov, Yu. Lyubarskii, “Gabor frames for rational functions”, Inventiones mathematicae, 231:2 (2023), 431–466
-
X. Dai, M. Zhu, Frame set for Gabor systems with Haar window, 2022, arXiv: arXiv-paper
Series of lectures
|
|