Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Contemporary methods in approximation theory and complex analysis
November 17, 2023 11:00–12:00, Moscow, Steklov Mathematical Institute of RAS (8 Gubkina)
 


Time-frequency analysis. Lecture 3

Yu. S. Belov

Saint-Petersburg State University, Department of Mathematics and Computer Science
Video records:
MP4 3,317.6 Mb

Number of views:
This page:144
Video files:39
Youtube Live:

Yu. S. Belov
Photo Gallery




References
  1. K. Grochenig, Foundations of Time-Frequency Analysis, Applied and Numerical Harmonic Analysis (ANHA), Birkhauser, Boston, MA, 2001  crossref  zmath
  2. C. Heil, “History and evolution of the density theorem for Gabor frames”, J. Fourier Anal. Appl, 13:2 (2007), 113–166  crossref  zmath
  3. A. Ron and Z. Shen, “Weyl–Heisenberg frames and Riesz bases in $L^2(\mathbb R^d)$”, Duke Math. J., 89:2 (1997), 237–282  crossref  zmath
  4. K. Seip, “Density theorems for sampling and interpolation in the Bargmann–Fock space. I”, 429, 1992, 91–106  crossref  zmath
  5. K. Grochenig, J. Stockler, “Gabor frames and totally positive functions”, Duke Mathematical Journal, 162:6 (2011), 1003–1031  crossref
  6. K. Grochenig, J.L. Romero, J. Stockler, “Sampling theorems for shift-invariant spaces, Gabor frames, and totally positive functions”, Inventiones mathematicae, 211:3 (2016), 1119–1148  crossref  adsnasa
  7. Yu. Belov, A. Kulikov, Yu. Lyubarskii, “Gabor frames for rational functions”, Inventiones mathematicae, 231:2 (2023), 431–466  crossref  zmath  adsnasa
  8. X. Dai, M. Zhu, Frame set for Gabor systems with Haar window, 2022, arXiv: arXiv-paper

Series of lectures
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024