|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
I. E. Preobrazenski, M. M. Preobrazhenskaya, “Discrete traveling waves in a relay system of differential-difference equations modeling a fully connected network of synaptically connected neurons”, Izvestiya VUZ. Applied Nonlinear Dynamics, 32:5 (2024), 654–669 |
2. |
V. V. Alekseev, M. M. Preobrazhenskaia, “Analysis of the asymptotic convergence of periodic solution of the Mackey–Glass equation to the solution of the limit relay equation”, TMF, 220:2 (2024), 213–236 ; Theoret. and Math. Phys., 220:2 (2024), 1241–1261 |
1
|
|
2021 |
3. |
M. M. Preobrazhenskaya, “Discrete traveling waves in a relay system of Mackey–Glass equations with two delays”, TMF, 207:3 (2021), 489–504 ; Theoret. and Math. Phys., 207:3 (2021), 827–840 |
4
|
4. |
M. M. Preobrazhenskaya, D. V. Talalaev, “Group extensions, fiber bundles, and a parametric Yang–Baxter equation”, TMF, 207:2 (2021), 310–318 ; Theoret. and Math. Phys., 207:2 (2021), 670–677 |
3
|
|
2020 |
5. |
V. M. Buchstaber, S. Igonin, S. Konstantinou-Rizos, M. M. Preobrazhenskaia, “Yang–Baxter maps, Darboux transformations, and linear approximations of refactorisation problems”, J. Phys. A, 53:50 (2020), 504002, 22 pp. |
9
|
6. |
M. M. Preobrazhenskaya, “A relay Mackey–Glass model with two delays”, TMF, 203:1 (2020), 106–118 ; Theoret. and Math. Phys., 203:1 (2020), 524–534 |
4
|
|
2019 |
7. |
V. E. Goryunov, M. M. Preobrazhenskaya, “Quasi-stability of coexisting attractors of a neurodynamic model with delay”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 173 (2019), 26–47 |
|
2018 |
8. |
S. A. Kashchenko, M. M. Preobrazhenskaya, “Bifurcations in the generalized Korteweg–de Vries equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 2, 54–68 ; Russian Math. (Iz. VUZ), 62:2 (2018), 49–61 |
3
|
|
2017 |
9. |
M. M. Preobrazhenskaya, “The impulse-refractive mode in the neural network with ring synaptic interaction”, Model. Anal. Inform. Sist., 24:5 (2017), 550–566 |
4
|
10. |
M. M. Preobrazhenskaia, “Relaxation cycles in a model of synaptically interacting oscillators”, Model. Anal. Inform. Sist., 24:2 (2017), 186–204 |
6
|
|
2014 |
11. |
M. M. Preobrazhenskaya, “Application of the method of quasi-normal forms to the mathematical model of a single neuron”, Model. Anal. Inform. Sist., 21:5 (2014), 38–48 |
1
|
|
2013 |
12. |
V. V. Alexeev, V. G. Bogaevskaya, M. M. Preobrazhenskaya, A. Yu. Ukhalov, H. Edelsbrunner, O. P. Yakimova, “An algorithm for cartographic generalization that preserves global topology”, Fundam. Prikl. Mat., 18:2 (2013), 5–12 ; J. Math. Sci., 203:6 (2014), 754–760 |
3
|
|
Organisations |
|
|
|
|