Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Efremova, Lyudmila Sergeevna

Total publications: 34 (32)
in MathSciNet: 14 (13)
in zbMATH: 12 (11)
in Web of Science: 12 (11)
in Scopus: 10 (10)
Cited articles: 27
Citations: 207
Presentations: 22

Number of views:
This page:5305
Abstract pages:14000
Full texts:3890
References:1606
Associate professor
Doctor of physico-mathematical sciences (2018)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date: 27.02.1952
E-mail: ,
Keywords: dynamical systems; differential and topological dynamics of discrete dynamical systems in low dimensions; one-dimensional dynamics; chaotic dynamics.

Subject:

The problem of the coexistence of periods of periodic points of continuous maps of the circle was solved. Interdependence of arithmetic correlations between periods of periodic points with the degree of a continuous map of the circle is established. Criteria of the existence of homoclinic points of continuous endomorphisms of the circle and criteria of the disguishing of continuous endomorphisms of the circle with complicated dynamics (in the sense of A. N. Sharkovsky) are proved. The new concept of the investigation of skew products of interval maps based on the use of new set-valued functions (the $\Omega$-function and the $Bi$-function) of a skew product of interval maps was proposed. In the frames of this concept the dual nature of skew products of interval maps was explaned (it was established why some skew products of interval maps inherit the properties of interval maps, and others have the new properties which are not observed in interval maps). The criterion of the $\Omega$-stability of a skew product of interval maps in the space of $C^1$-smooth skew products of interval maps was proved. Nongenericity of $\Omega$-stability in the space of $C^1$-smooth skew products of interval maps was proved. The problem of the description of dynamics of the "most simple" continuous maps of dendrites with a closed set of brunch points of a finite order was formulated. A number of papers (joint with E. N. Makhrova) were devoted to the investigation of dynamics of monotone and piecewise monotone maps of dendrites with a closed set of periodic points. The possibility of the existence of piecewise monotone maps with fixed points and zero topological entropy possessing of the wandering homoclinic points; nonwandering, but not $\omega$-limit homoclinic points; $\omega$-limit homoclinic points on dendrites with a closed set of brunch points was determined.

Biography

Graduated from the Faculty of Mathematics and Mechanics of Gorky State University in 1974 (department of differential equations and mathematical analysis). PhD thesis was defended in 1981. A list of my works contains more than 70 titles. I deliver the lectures on contemporary problems of the theory of discrete dynamical systems for students, masters and post-graduates.

   
Main publications:
  • L. S. Efremova, “Dynamics of skew products of interval maps”, Russian Math. Surveys, 72:1 (2017), 101–178
  • L. S. Efremova, E. N. Makhrova, “One-dimensional dynamical systems”, Russian Math. Surveys, 76:5 (2021), 821–881.

https://www.mathnet.ru/eng/person8759
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/204958
https://elibrary.ru/author_items.asp?spin=5317-5407
https://orcid.org/0000-0001-5821-6697
https://www.webofscience.com/wos/author/record/AAQ-8061-2021
https://www.scopus.com/authid/detail.url?authorId=7004059595

List of publications:
| scientific publications | by years | by types | by times cited | common list |


Citations (Crossref Cited-By Service + Math-Net.Ru)

   2024
1. Lyudmila S. Efremova, “$C^1$-Smooth $\Omega$-Stable Skew Products and Completely Geometrically Integrable Self-Maps of 3D-Tori, I: $\Omega$-Stability”, Regul. Chaotic Dyn., 29:3 (2024), 491–514  mathnet  crossref; 1
2. L. S. Efremova, M. A. Shalagin, “On limit sets of simplest skew products defined on multidimensional cells”, Izvestiya VUZ. Applied Nonlinear Dynamics, 32:6 (2024), 796–815  mathnet  crossref

   2023
3. L. S. Efremova, “Introduction to completely geometrically integrable maps in high dimensions”, Mathematics, 11:4 (2023), 926 , 14 pp.  crossref 3
4. L. S. Efremova, “Ramified continua as global attractors of $C^1$-smooth self-maps of a cylinder close to skew products”, J. Difference Eq. & Appliq., 29:9-12 (2023), 1244-1274  crossref 2
5. Lozi R., Efremova L.S., Abdelouhab M.-S., El Assad S., Plunachek M., “Foreword to the special issue of Journal of Difference Equations and Applications on ‘Lozi, Hénon, and other chaotic attractors, theory and applications’”, J. Difference Eq. & Appliq., 29:9-12 (2023), 861 - 875  crossref

   2022
6. L. S. Efremova, “Simplest skew products on $n$-dimensional $(n\ge 2)$ cells, cylinders and tori”, Lobachevskii Journal of Mathematics, 43:7 (2022), 1598–1618  crossref 3
7. O. N. Ageev, Ya. B. Vorobets, B. Weiss, R. I. Grigorchuk, V. Z. Grines, B. M. Gurevich, L. S. Efremova, A. Yu. Zhirov, E. V. Zhuzhoma, B. S. Kashin, V. N. Kolokoltsov, A. V. Kochergin, L. M. Lerman, I. V. Mykytyuk, V. I. Oseledets, A. Yu. Plakhov, O. V. Pochinka, V. V. Ryzhikov, V. Zh. Sakbaev, A. G. Sergeev, Ya. G. Sinai, A. T. Tagi-Zade, S. V. Tikhonov, J.-P. Thouvenot, A. Ya. Helemskii, A. I. Shafarevich, “Anatolii Mikhailovich Stepin (obituary)”, Russian Math. Surveys, 77:2 (2022), 361–367  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi

   2021
8. L. S. Efremova, E. N. Makhrova, “One-dimensional dynamical systems”, Russian Math. Surveys, 76:5 (2021), 821–881  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
9. L. S. Efremova, “Geometrically integrable maps in the plane and their periodic orbits”, Lobachevskii Journal of Mathematics, 42:10 (2021), 2315–2324  crossref 7
10. O. V. Anashkin, P. M. Akhmet'ev, D. V. Balandin, M. K. Barinova, I. V. Boykov, A. N. Bezdenezhnyh, V. N. Belykh, P. A. Vel'misov, I. Yu. Vlasenko, O. E. Galkin, S. Yu. Galkina, V. K. Gorbunov, S. D. Glyzin, S. V. Gonchenko, A. S. Gorodetski, E. V. Gubina, E. Ya. Gurevich, A. A. Davydov, L. S. Efremova, R. V. Zhalnin, A. Yu. Zhirov, E. V. Zhuzhoma, N. I. Zhukova, S. Kh. Zinina, Yu. S. Ilyashenko, N. V. Isaenkova, A. O. Kazakov, A. V. Klimenko, S. A. Komech, Yu. A. Kordyukov, V. E. Kruglov, E. V. Kruglov, E. B. Kuznetsov, S. K. Lando, Yu. A. Levchenko, L. M. Lerman, S. I. Maksimenko, M. I. Malkin, D. S. Malyshev, V. K. Mamaev, T. Ph. Mamedova, V. S. Medvedev, T. V. Medvedev, D. I. Mints, T. M. Mitryakova, A. D. Morozov, A. I. Morozov, E. V. Nozdrinova, E. N. Pelinovsky, Ya. B. Pesin, A. S. Pikovsky, S. Yu. Pilyugin, G. M. Polotovsky, O. V. Pochinka, I. D. Remizov, P. E. Ryabov, A. S. Skripchenko, A. V. Slunyaev, S. V. Sokolov, L. A. Sukharev, E. A. Talanova, V. A. Timorin, S. B. Tikhomir, “To the 75th anniversary of Vyacheslav Zigmundovich Grines”, Zhurnal SVMO, 23:4 (2021), 472–476  mathnet  crossref

   2020
11. L. S. Efremova, “Small perturbations of smooth skew products and Sharkovsky's theorem”, J. Difference Eq. & Appliq., 26:8 (2020), 1192 - 1211  crossref 8
12. L. S. Efremova, “Small C1-smooth perturbations of skew products and the partial integrability property”, Applied Math. & Nonlinear Sci., 5:2 (2020), 317 - 328  crossref 12
13. L. S. Efremova, “Periodic Behavior of Maps Obtained by Small Perturbations of Smooth Skew Products"”, Discontinuity, Nonlinearity & Complexity, 9:4 (2020), 519 - 523  crossref 6

   2019
14. L. S. Efremova, A. D. Grekhneva, V. Zh. Sakbaev, “Phase Flows Generated by Cauchy Problem for Nonlinear Schrödinger Equation and Dynamical Mappings of Quantum States", Lobachevskii Phase Flows Generated by Cauchy Problem for Nonlinear Schrödinger Equation and Dynamical Mappings of Quantum States”, Lobachevskii Journal of Mathematics, 40:10 (2019), 1455 - 1469  crossref 4

   2018
15. L. S. Efremova, “The trace map and integrability of the multifunctions”, Journal of Physics: Conference Series, 990:1 (2018), 012003 , 10 pp.  crossref

   2017
16. L. S. Efremova, “Dynamics of skew products of interval maps”, Russian Math. Surveys, 72:1 (2017), 101–178  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus

   2016
17. L. S. Efremova, “Multivalued functions and nonwandering set of skew products of maps of an interval with complicated dynamics of quotient map”, Russian Math. (Iz. VUZ), 60:2 (2016), 77–81  mathnet  crossref  isi  scopus

   2015
18. L. S. Efremova, V. Zh. Sakbaev, “Notion of blowup of the solution set of differential equations and averaging of random semigroups”, Theoret. and Math. Phys., 185:2 (2015), 1582–1598  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  scopus
19. S. S. Bel’mesova, L. S. Efremova, “On the concept of integrability for discrete dynamical systems. Investigation of wandering points of some trace map”, Nonlinear maps and their applications (Saragoza, Spain, 2013), Springer Proceedings in Math. & Stat., 112, eds. R. López-Ruiz, D. Fournier-Prunaret et al, Springer, Cham, 2015, 127 - 158  crossref 10

   2014
20. L. S. Efremova, “Remarks on the nonwandering set of skew products with a closed set of periodic points of the quotient map”, Nonlinear maps and their applications (Evora, Portugal, 2011), Springer Proceedings in Math. & Stat., 57, eds. K. Gracio, D. Fournier-Prunaret et al, Springer, New - York, 2014, 39 - 58  crossref 8
21. L. S. Efremova, “Absence of $C^1$-$\Omega$-explosion in the space of smooth simplest skew products”, Journal of Mathematical Sciences, 202:6 (2014), 794–808  mathnet  crossref  scopus

   2013
22. S. S. Bel'mesova, L. S. Efremova, “A one-parameter family of quadratic maps of a plane including Morse–Smale endomorphisms”, Russian Math. (Iz. VUZ), 57:8 (2013), 70–74  mathnet  crossref  scopus
23. L. S. Efremova, “A decomposition theorem for the space of $C^1$-smooth skew products with complicated dynamics of the quotient map”, Sb. Math., 204:11 (2013), 1598–1623  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus

   2010
24. L. S. Efremova, “Differential properties and attracting sets of a simplest skew product of interval maps”, Sb. Math., 201:6 (2010), 873–907  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
25. L. S. Efremova, “Space of $C^1$-smooth skew products of maps of an interval”, Theoret. and Math. Phys., 164:3 (2010), 1208–1214  mathnet  crossref  crossref  adsnasa  isi  scopus

   2006
26. L. S. Efremova, “On the nonwandering set and center of some skew products of mappings of the interval”, Russian Math. (Iz. VUZ), 50:10 (2006), 17–25  mathnet  mathscinet  elib

   2002
27. L. S. Efremova, “$\Omega$-Stable Skew Products of Interval Maps Are Not Dense in $T^1(I)$”, Proc. Steklov Inst. Math., 236 (2002), 157–163  mathnet  mathscinet  zmath

   2001
28. L. S. Efremova, E. N. Makhrova, “The dynamics of monotone maps of dendrites”, Sb. Math., 192:6 (2001), 807–821  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
29. L. S. Efremova, “On the concept of the $\Omega$-function of the skew product of interval mappings”, J. Math. Sci. (New York), 105:1 (2001), 1779–1798  mathnet  crossref  mathscinet  zmath

   1998
30. M. I. Voinova, L. S. Efremova, “Dynamics of elementary maps of dendrites”, Math. Notes, 63:2 (1998), 161–171  mathnet  crossref  crossref  mathscinet  zmath  isi

   1997
31. L. S. Efremova, E. N. Makhrova, “The dynamics of a monotone mapping of an $n$-odd”, Russian Math. (Iz. VUZ), 41:10 (1997), 29–34  mathnet  mathscinet  zmath

   1994
32. L. S. Efremova, “Letter to the editor”, Math. Notes, 56:5 (1994), 1193–1194  mathnet  crossref

   1993
33. L. S. Efremova, “A class of twisted products of maps of an interval”, Math. Notes, 54:3 (1993), 890–898  mathnet  crossref  mathscinet  zmath  isi

   1985
34. L. S. Efremova, “A quotient of periods other than a power of two leads to chaos in a neighbourhood”, Russian Math. Surveys, 40:1 (1985), 217–218  mathnet  crossref  mathscinet  zmath  adsnasa  isi

Presentations in Math-Net.Ru
1. $C^1$- $\Omega$-стабильность косых произведений отображений окружности
L. S. Efremova
International conference “Theory of Functions, Operator Theory and Quantum Information Theory”
June 11, 2024 12:15   
2. Косые произведения и геометрически интегрируемые отображения (двумерный случай)
L. S. Efremova
Modern geometry methods
April 10, 2024 19:15
3. Skew products and geometrically integrable maps: results, problems and prospects
L. S. Efremova
Steklov Mathematical Institute Seminar
October 19, 2023 16:00   
4. Косые произведения и геометрически интегрируемые отображения: результаты, проблемы и перспективы
L. S. Efremova
Seminar by V. V. Kozlov, S. V. Kozyrev, A. S. Trushechkin and I. V. Volovich "Quantum mathematical physics"
October 18, 2023 18:00
5. On ω-limit sets of simplest skew products defined on n-dimensional cells
M. Shalagin, L. S. Efremova
III International Conference “Mathematical Physics, Dynamical Systems, Infinite-Dimensional Analysis”, dedicated to the 100th anniversary of V.S. Vladimirov, the 100th anniversary of L.D. Kudryavtsev and the 85th anniversary of O.G. Smolyanov
July 6, 2023 16:10   
6. Ramified continua as global attractors of C1-smooth self-maps of a cylinder close to skew products
L. S. Efremova
III International Conference “Mathematical Physics, Dynamical Systems, Infinite-Dimensional Analysis”, dedicated to the 100th anniversary of V.S. Vladimirov, the 100th anniversary of L.D. Kudryavtsev and the 85th anniversary of O.G. Smolyanov
July 6, 2023 15:00   
7. 15.00 - 15.25. L.S. Efremova (Lobachevsky State University). On the geometric property of smooth cylinder maps close in the $C^1$-norm to skew products and its dynamical applications.
L. S. Efremova
International Conference "Theory of Functions, Operator Theory and Quantum Information Theory"
June 1, 2023 15:00   
8. Ramified chaotic attractors of smooth geometrically integrable self-maps of a cylinder
L. S. Efremova
International Conference "New Trends in Mathematical Physics"
November 9, 2022 10:30   
9. Weakly non-wandering points in the dynamics of skew products in high dimensions
L. S. Efremova
International Conference "Functions Theory, Operators Theory and Quantum Information Theory"
October 19, 2022 15:00   
10. From Skew Products to Geometrically Integrable Maps in the Plane
L. S. Efremova
Conference «Hyperbolic Dynamics and Structural Stability» Dedicated to the 85th Anniversary of D. V. Anosov
November 12, 2021 13:00   
11. Простейший одномерный нехаотический аттрактор и гладкость косого произведения
L. S. Efremova
Function Theory, Operator Theory and Quantum Information Theory
October 7, 2021 12:00   
12. On the space of smooth geometrically integrable maps in the plane
L. S. Efremova
Mathematical Physics, Dynamical Systems and Infinite-Dimensional Analysis – 2021
July 3, 2021 16:55   
13. Малые возмущения гладких косых произведений и свойство частичной интегрируемости
L. S. Efremova
Infinite dimensional analysis and mathematical physics
December 14, 2020 18:30
14. On the partial integrability property of maps obtained by small smooth perturbations of skew products
Lyudmila Efremova
International Conference on Mathematical Physics in Memory of Academic V. S. Vladimirov
November 24, 2020 18:30   
15. Гладкие возмущения косых произведений отображений интервала и свойство частичной интегрируемости
L. S. Efremova
Dynamical systems and differential equations
October 14, 2019 18:30
16. О гладких возмущениях косых произведений отображений интервала, приводящих к свойству частичной интегрируемости
L. S. Efremova
Dynamical systems and differential equations
March 18, 2019 18:30
17. Косые произведения в плоскости
L. S. Efremova
Dynamical systems and differential equations
February 26, 2018 18:30
18. Динамика косых произведений отображений интервала
L. S. Efremova
Infinite dimensional analysis and mathematical physics
February 12, 2018 18:30
19. Dynamics of skew products of interval maps
L. S. Efremova
Dobrushin Mathematics Laboratory Seminar
September 12, 2017 16:00
20. Main subspaces of the space of $C^1$-smooth skew products of interval maps
Lyudmila Efremova
International Conference “Anosov Systems and Modern Dynamics” dedicated to the 80th anniversary of Dmitry Anosov
December 22, 2016 17:00
21. On the complexity of skew products of maps of an interval
L. S. Efremova
The Seventh International Conference on Differential and Functional Differential Equations
August 25, 2014 18:25   
22. Integrability->Skew Products->Trace Maps
L. S. Efremova
International Conference on Differential Equations and Dynamical Systems
July 8, 2014 14:30

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024