Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Steklov Mathematical Institute Seminar
October 19, 2023 16:00, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)
 


Skew products and geometrically integrable maps: results, problems and prospects

L. S. Efremova
Video records:
MP4 2,850.6 Mb
MP4 1,015.4 Mb
Supplementary materials:
Adobe PDF 618.0 Kb

Number of views:
This page:772
Video files:358
Materials:86
Youtube:

L. S. Efremova
Photo Gallery



Abstract: Skew products on the simplest manifolds of a finite dimension are considered. The fundamental theorem on the decomposition of the space of $C^1$-smooth skew products into the finite union of subspaces is proved. The theorem is explained for the case of skew products with a two-dimensional phase space. The most studied at present is one of the subspaces (in some natural sense, the simplest) containing an open (but not everywhere dense in it) subset of $C^1$-smooth Omega-stable skew products. The approximation properties of such mappings are considered. It is shown how naturally, within the framework of the study of skew products, one of the possible approaches to the concept of integrability of a discrete dynamical system arises. Criteria of integrability of a discrete dynamical system are given. Unsolved problems are formulated.

Supplementary materials: Efremova_19.10.2023.pdf (618.0 Kb)
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024