Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Yagodnikov, Dmitrii Alekseevich

Statistics Math-Net.Ru
Total publications: 36
Scientific articles: 36

Number of views:
This page:336
Abstract pages:2852
Full texts:1472
References:173
Yagodnikov, Dmitrii Alekseevich
Professor
Doctor of technical sciences (1998)
Speciality: 05.07.05 (Engines, electro-rocket engines, and the energy plants for aircrafts)
Birth date: 6.11.1961
E-mail:
Website: https://www.e1-bmstu.ru/index.html
   
Main publications:
  1. И. В. Анахова, Ю. Н. Власов, В. Н. Рождествин, Д. А. Ягодников, “Численное моделирование кинетических процессов в плазме сверхзвукового электроразрядного СО-лазера, возбуждаемого СВЧ-разрядом”, Квантовая электроника, 37:3 (2007), 237–242  mathnet
  2. Ягодников Д.А., Воспламенение и горение порошкообразных металлов, Изд-во МГТУ им. Н.Э.Баумана,, Москва, 2009, 436 с.
  3. Ягодников Д.А., “Экспериментальное исследование газодисперсного пламени частиц бора”, Физика горения и взрыва, 46 (2010), 64–71
  4. Волков В. Т., Ягодников Д. А., Исследование и стендовая отработка ракетных двигателей на твердом топливе, Изд-во МГТУ им. Н.Э.Баумана, Москва, 2007, 296 с.
  5. Ягодников Д. А., “Исследование влияния внешнего электрического поля на характеристики теплообмена в камере сгорания с пористым трактом охлаждения”, 39, № 5, 2001, 778–793

https://www.mathnet.ru/eng/person85821
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru Citations
2024
1. A. P. Shpara, D. A. Yagodnikov, A. V. Sukhov, “Effect of heat losses on boron particle combustion in a high-temperature air flow”, Fizika Goreniya i Vzryva, 60:2 (2024),  39–46  mathnet  elib; Combustion, Explosion and Shock Waves, 60:2 (2024), 178–184
2023
2. K. E. Kovalev, D. A. Yagodnikov, A. N. Bobrov, “Non-contact acoustic method for determining the combustor pressure in a model solid rocket motor”, Fizika Goreniya i Vzryva, 59:4 (2023),  78–84  mathnet  elib; Combustion, Explosion and Shock Waves, 59:4 (2023), 464–470
2022
3. D. A. Yagodnikov, O. A. Vorozheeva, A. O. Novikov, “Experimental investigation of soot formation processes during combustion of an overenriched oxygen–methane mixture”, TVT, 60:5 (2022),  774–780  mathnet  elib; High Temperature, 60:5 (2022), 710–715 2
4. D. A. Yagodnikov, “Technique for recording and analysis of the amplitude spectrum of the strength oscillations of magnetic and electric fields of combustion products in a model liquid rocket engine fuel depending on the combustion chamber pressure”, TVT, 60:1 (2022),  87–93  mathnet  elib; High Temperature, 60:1 (2022), 79–84 1
2021
5. A. Rudinskiy, D. A. Yagodnikov, S. V. Ryzhkov, V. V. Onufriev, “Features of intrinsic electric field formation in low-temperature oxygen–methane plasma”, Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:10 (2021),  42–45  mathnet  elib; Tech. Phys. Lett., 47:7 (2021), 520–523 8
6. A. Rudinskiy, D. A. Yagodnikov, S. A. Grishin, A. E. Gorbunov, A. S. Burkov, A. N. Bobrov, D. B. Safonova, “Acoustic and electrophysical diagnostics of two-phase high-enthalpy flow: Results of experimental investigations”, TVT, 59:5 (2021),  737–746  mathnet  elib; High Temperature, 60:1, Suppl. 2 (2022), S230–S239 3
7. A. Rudinskiy, D. A. Yagodnikov, “Электрофизика горения углеводородного горючего в камере жидкостного ракетного двигателя”, TVT, 59:3 (2021),  422–431  mathnet  elib 1
2020
8. A. P. Shpara, D. A. Yagodnikov, A. V. Sukhov, “Effect of particle size on boron combustion in air”, Fizika Goreniya i Vzryva, 56:4 (2020),  112–120  mathnet  elib; Combustion, Explosion and Shock Waves, 56:4 (2020), 471–478 16
9. A. N. Bobrov, A. Rudinskiy, N. M. Pushkin, D. B. Safonova, D. A. Yagodnikov, “Experimental study of the working process in liquid rocket engines by an electrophysical diagnostic method”, Zhurnal Tekhnicheskoi Fiziki, 90:8 (2020),  1289–1295  mathnet  elib; Tech. Phys., 65:8 (2020), 1239–1245 3
2019
10. A. Rudinskiy, V. I. Lapitskii, D. A. Yagodnikov, “Effect of condensed phase particles on the characteristics of the electromagnetic field of combustion products in the flow duct of a liquid-propellant engine. The results of experimental studies”, Fizika Goreniya i Vzryva, 55:5 (2019),  59–66  mathnet  elib; Combustion, Explosion and Shock Waves, 55:5 (2019), 566–573 1
11. A. Rudinskiy, D. A. Yagodnikov, “Mathematical modeling of electrization of particles of a condensing phase in high-temperature flow of combustion products of rocket engines”, TVT, 57:5 (2019),  777–785  mathnet  elib; High Temperature, 57:5 (2019), 753–760  isi  scopus 11
2018
12. A. A. Dorofeev, D. A. Yagodnikov, “Thermodynamic modeling of the composition and characteristics of combustion products of overrich liquid rocket fluids in the quenching mode”, TVT, 56:2 (2018),  270–276  mathnet  elib; High Temperature, 56:2 (2018), 263–269  isi  elib  scopus 6
2017
13. D. A. Yagodnikov, A. V. Ignatov, E. I. Gusachenko, “Ignition and combustion of pyrotechnic compositions based on microsized and ultra-nanosized aluminum particles in a moist medium in a two-zone gas generator”, Fizika Goreniya i Vzryva, 53:1 (2017),  19–28  mathnet  elib; Combustion, Explosion and Shock Waves, 53:1 (2017), 15–23 6
14. D. A. Yagodnikov, A. Rudinskiy, “Diagnostics of rocket and jet engines through characteristics of the intrinsic electromagnetic field of combustion products”, TVT, 55:5 (2017),  828–845  mathnet  elib; High Temperature, 55:5 (2017), 808–824  isi  scopus 8
2016
15. D. A. Yagodnikov, A. V. Voronetskii, V. I. Sarab'ev, “Ignition and combustion of pyrotechnic compositions based on microand nanoparticles of aluminum diboride in air flow in a two-zone combustion chamber”, Fizika Goreniya i Vzryva, 52:3 (2016),  51–58  mathnet  elib; Combustion, Explosion and Shock Waves, 52:3 (2016), 300–306 18
2014
16. D. A. Yagodnikov, A. V. Sergeev, V. V. Kozichev, “Experimental and theoretical basis for improving the accuracy of measuring the burning rate of energetic condensed systems by a microwave method”, Fizika Goreniya i Vzryva, 50:2 (2014),  51–61  mathnet  elib; Combustion, Explosion and Shock Waves, 50:2 (2014), 168–177 6
2010
17. D. A. Yagodnikov, “Experimental study of combustion of a cloud of boron particles in air”, Fizika Goreniya i Vzryva, 46:4 (2010),  64–71  mathnet  elib; Combustion, Explosion and Shock Waves, 46:4 (2010), 426–432 11
2007
18. O. G. Glotov, D. A. Yagodnikov, V. S. Vorob’ev, V. E. Zarko, V. N. Simonenko, “Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. II. Experimental studies of agglomeration”, Fizika Goreniya i Vzryva, 43:3 (2007),  83–97  mathnet  elib; Combustion, Explosion and Shock Waves, 43:3 (2007), 320–333 64
19. I. V. Anakhova, Yu. N. Vlasov, V. N. Rozhdestvin, D. V. Shlapatskii, D. A. Yagodnikov, “Numerical modelling of kinetic processes in the plasma of a supersonic electric-discharge CO laser excited by a microwave discharge”, Kvantovaya Elektronika, 37:3 (2007),  237–242  mathnet  elib [Quantum Electron., 37:3 (2007), 237–242  isi  scopus]
2006
20. D. A. Yagodnikov, E. A. Andreev, V. S. Vorob’ev, O. G. Glotov, “Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. I. Theoretical study of the ignition and combustion of aluminum with fluorine-containing coatings”, Fizika Goreniya i Vzryva, 42:5 (2006),  46–55  mathnet  elib; Combustion, Explosion and Shock Waves, 42:5 (2006), 534–542 44
2004
21. D. A. Yagodnikov, E. I. Gusachenko, “Experimental study of the disperse composition of condensed products of aluminum-particle combustion in air”, Fizika Goreniya i Vzryva, 40:2 (2004),  33–41  mathnet  elib; Combustion, Explosion and Shock Waves, 40:2 (2004), 154–162 9
2002
22. D. A. Yagodnikov, E. I. Gusachenko, “Effect of an external electric field on the disperse composition of condensed products of aluminum particle combustion in air”, Fizika Goreniya i Vzryva, 38:4 (2002),  80–86  mathnet  elib; Combustion, Explosion and Shock Waves, 38:4 (2002), 449–455 6
2001
23. D. A. Yagodnikov, A. N. Bobrov, “Mathematical combustion model of a two–component gas suspension including a powder combustible and a powder oxidizer”, Fizika Goreniya i Vzryva, 37:3 (2001),  25–32  mathnet  elib; Combustion, Explosion and Shock Waves, 37:3 (2001), 267–273 1
24. D. A. Yagodnikov, “Investigation of the effect of electric field on the characteristics of heat transfer in a combustion chamber with a porous cooling flow train”, TVT, 39:5 (2001),  788–793  mathnet; High Temperature, 39:5 (2001), 733–738 1
1998
25. D. A. Yagodnikov, A. V. Voronetskii, “Effect of the external electric field on the combustion of a suspension of aluminum particles in air”, Fizika Goreniya i Vzryva, 34:6 (1998),  23–28  mathnet  elib; Combustion, Explosion and Shock Waves, 34:6 (1998), 621–626 5
26. D. A. Yagodnikov, “Effect of an electric field on the stabilization of a turbulent propane–air flame”, Fizika Goreniya i Vzryva, 34:1 (1998),  20–24  mathnet; Combustion, Explosion and Shock Waves, 34:1 (1998), 16–19 2
1997
27. D. A. Yagodnikov, A. V. Voronetskii, “Experimental and theoretical study of the ignition and combustion of an aerosol of encapsulated aluminum particles”, Fizika Goreniya i Vzryva, 33:1 (1997),  60–68  mathnet  elib; Combustion, Explosion and Shock Waves, 33:1 (1997), 49–55 38
1996
28. D. A. Yagodnikov, “Statistical model of flame-front propagation in a boron-air mixture”, Fizika Goreniya i Vzryva, 32:6 (1996),  29–46  mathnet; Combustion, Explosion and Shock Waves, 32:6 (1996), 623–636 5
1995
29. D. A. Yagodnikov, A. V. Voronetskii, V. I. Lapitskii, “Flame propagation through an aluminum aerosuspension at reduced pressure”, Fizika Goreniya i Vzryva, 31:5 (1995),  23–31  mathnet; Combustion, Explosion and Shock Waves, 31:5 (1995), 524–531
30. D. A. Yagodnikov, A. V. Voronetskii, N. M. Pushkin, “Electrification of nozzle in a liquid rocket engine”, Fizika Goreniya i Vzryva, 31:4 (1995),  54–58  mathnet; Combustion, Explosion and Shock Waves, 31:4 (1995), 450–454 4
31. D. A. Yagodnikov, A. V. Voronetskii, “Stabilization features for a propane-air flame with application of longitudinal and transverse electric fields”, Fizika Goreniya i Vzryva, 31:1 (1995),  40–45  mathnet; Combustion, Explosion and Shock Waves, 31:1 (1995), 37–41 4
1994
32. D. A. Yagodnikov, A. V. Voronetskii, “Effect of an external electrical field on ignition and combustion processes”, Fizika Goreniya i Vzryva, 30:3 (1994),  3–12  mathnet; Combustion, Explosion and Shock Waves, 30:3 (1994), 261–268 11
1992
33. D. A. Yagodnikov, A. V. Voronetskii, “Effect of velocity nonequilibrium on the laminar flame propagation characteristics in an air-dispersed medium”, Fizika Goreniya i Vzryva, 28:5 (1992),  38–44  mathnet; Combustion, Explosion and Shock Waves, 28:5 (1992), 484–490 1
34. A. N. Bobrov, D. A. Yagodnikov, I. V. Popov, “Ignition and combustion in a two-component powder suspension in a gas”, Fizika Goreniya i Vzryva, 28:5 (1992),  3–7  mathnet; Combustion, Explosion and Shock Waves, 28:5 (1992), 453–457 1
35. D. A. Yagodnikov, A. V. Voronetskii, V. M. Mal'tsev, V. A. Seleznev, “Enhancing the propagation velocity of a flame front in an aluminum aerosuspension”, Fizika Goreniya i Vzryva, 28:2 (1992),  51–54  mathnet; Combustion, Explosion and Shock Waves, 28:2 (1992), 155–158 5
1989
36. A. V. Voronetskii, D. G. Pavlov, A. V. Sukhov, D. A. Yagodnikov, “Statistical model of a two-phase reacting turbulent flow”, Fizika Goreniya i Vzryva, 25:3 (1989),  53–59  mathnet; Combustion, Explosion and Shock Waves, 25:3 (1989), 311–315

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024