И. В. Анахова, Ю. Н. Власов, В. Н. Рождествин, Д. А. Ягодников, “Численное моделирование кинетических процессов в плазме сверхзвукового электроразрядного СО-лазера, возбуждаемого СВЧ-разрядом”, Квантовая электроника, 37:3 (2007), 237–242
Ягодников Д.А., Воспламенение и горение порошкообразных металлов, Изд-во МГТУ им. Н.Э.Баумана,, Москва, 2009, 436 с.
Ягодников Д.А., “Экспериментальное исследование газодисперсного пламени частиц бора”, Физика горения и взрыва, 46 (2010), 64–71
Волков В. Т., Ягодников Д. А., Исследование и стендовая отработка ракетных двигателей на твердом топливе, Изд-во МГТУ им. Н.Э.Баумана, Москва, 2007, 296 с.
Ягодников Д. А., “Исследование влияния внешнего электрического поля на характеристики теплообмена в камере сгорания с пористым трактом охлаждения”, 39, № 5, 2001, 778–793
A. P. Shpara, D. A. Yagodnikov, A. V. Sukhov, “Effect of heat losses on boron particle combustion in a high-temperature air flow”, Fizika Goreniya i Vzryva, 60:2 (2024), 39–46; Combustion, Explosion and Shock Waves, 60:2 (2024), 178–184
2023
2.
K. E. Kovalev, D. A. Yagodnikov, A. N. Bobrov, “Non-contact acoustic method for determining the combustor pressure in a model solid rocket motor”, Fizika Goreniya i Vzryva, 59:4 (2023), 78–84; Combustion, Explosion and Shock Waves, 59:4 (2023), 464–470
2022
3.
D. A. Yagodnikov, O. A. Vorozheeva, A. O. Novikov, “Experimental investigation of soot formation processes during combustion of an overenriched oxygen–methane mixture”, TVT, 60:5 (2022), 774–780; High Temperature, 60:5 (2022), 710–715
D. A. Yagodnikov, “Technique for recording and analysis of the amplitude spectrum of the strength oscillations of magnetic and electric fields of combustion products in a model liquid rocket engine fuel depending on the combustion chamber pressure”, TVT, 60:1 (2022), 87–93; High Temperature, 60:1 (2022), 79–84
A. Rudinskiy, D. A. Yagodnikov, S. V. Ryzhkov, V. V. Onufriev, “Features of intrinsic electric field formation in low-temperature oxygen–methane plasma”, Pisma v Zhurnal Tekhnicheskoi Fiziki, 47:10 (2021), 42–45; Tech. Phys. Lett., 47:7 (2021), 520–523
A. Rudinskiy, D. A. Yagodnikov, S. A. Grishin, A. E. Gorbunov, A. S. Burkov, A. N. Bobrov, D. B. Safonova, “Acoustic and electrophysical diagnostics of two-phase high-enthalpy flow: Results of experimental investigations”, TVT, 59:5 (2021), 737–746; High Temperature, 60:1, Suppl. 2 (2022), S230–S239
A. P. Shpara, D. A. Yagodnikov, A. V. Sukhov, “Effect of particle size on boron combustion in air”, Fizika Goreniya i Vzryva, 56:4 (2020), 112–120; Combustion, Explosion and Shock Waves, 56:4 (2020), 471–478
A. N. Bobrov, A. Rudinskiy, N. M. Pushkin, D. B. Safonova, D. A. Yagodnikov, “Experimental study of the working process in liquid rocket engines by an electrophysical diagnostic method”, Zhurnal Tekhnicheskoi Fiziki, 90:8 (2020), 1289–1295; Tech. Phys., 65:8 (2020), 1239–1245
A. Rudinskiy, V. I. Lapitskii, D. A. Yagodnikov, “Effect of condensed phase particles on the characteristics of the electromagnetic field of combustion products in the flow duct of a liquid-propellant engine. The results of experimental studies”, Fizika Goreniya i Vzryva, 55:5 (2019), 59–66; Combustion, Explosion and Shock Waves, 55:5 (2019), 566–573
A. Rudinskiy, D. A. Yagodnikov, “Mathematical modeling of electrization of particles of a condensing phase in high-temperature flow of combustion products of rocket engines”, TVT, 57:5 (2019), 777–785; High Temperature, 57:5 (2019), 753–760
A. A. Dorofeev, D. A. Yagodnikov, “Thermodynamic modeling of the composition and characteristics of combustion products of overrich liquid rocket fluids in the quenching mode”, TVT, 56:2 (2018), 270–276; High Temperature, 56:2 (2018), 263–269
D. A. Yagodnikov, A. V. Ignatov, E. I. Gusachenko, “Ignition and combustion of pyrotechnic compositions based on microsized and ultra-nanosized aluminum particles in a moist medium in a two-zone gas generator”, Fizika Goreniya i Vzryva, 53:1 (2017), 19–28; Combustion, Explosion and Shock Waves, 53:1 (2017), 15–23
D. A. Yagodnikov, A. Rudinskiy, “Diagnostics of rocket and jet engines through characteristics of the intrinsic electromagnetic field of combustion products”, TVT, 55:5 (2017), 828–845; High Temperature, 55:5 (2017), 808–824
D. A. Yagodnikov, A. V. Voronetskii, V. I. Sarab'ev, “Ignition and combustion of pyrotechnic compositions based on microand nanoparticles of aluminum diboride in air flow in a two-zone combustion chamber”, Fizika Goreniya i Vzryva, 52:3 (2016), 51–58; Combustion, Explosion and Shock Waves, 52:3 (2016), 300–306
D. A. Yagodnikov, A. V. Sergeev, V. V. Kozichev, “Experimental and theoretical basis for improving the accuracy of measuring the burning rate of energetic condensed systems by a microwave method”, Fizika Goreniya i Vzryva, 50:2 (2014), 51–61; Combustion, Explosion and Shock Waves, 50:2 (2014), 168–177
D. A. Yagodnikov, “Experimental study of combustion of a cloud of boron particles in air”, Fizika Goreniya i Vzryva, 46:4 (2010), 64–71; Combustion, Explosion and Shock Waves, 46:4 (2010), 426–432
O. G. Glotov, D. A. Yagodnikov, V. S. Vorob’ev, V. E. Zarko, V. N. Simonenko, “Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. II. Experimental studies of agglomeration”, Fizika Goreniya i Vzryva, 43:3 (2007), 83–97; Combustion, Explosion and Shock Waves, 43:3 (2007), 320–333
I. V. Anakhova, Yu. N. Vlasov, V. N. Rozhdestvin, D. V. Shlapatskii, D. A. Yagodnikov, “Numerical modelling of kinetic processes in the plasma of a supersonic electric-discharge CO laser excited by a microwave discharge”, Kvantovaya Elektronika, 37:3 (2007), 237–242 [Quantum Electron., 37:3 (2007), 237–242]
2006
20.
D. A. Yagodnikov, E. A. Andreev, V. S. Vorob’ev, O. G. Glotov, “Ignition, combustion, and agglomeration of encapsulated aluminum particles in a composite solid propellant. I. Theoretical study of the ignition and combustion of aluminum with fluorine-containing coatings”, Fizika Goreniya i Vzryva, 42:5 (2006), 46–55; Combustion, Explosion and Shock Waves, 42:5 (2006), 534–542
D. A. Yagodnikov, E. I. Gusachenko, “Experimental study of the disperse composition of condensed products of aluminum-particle combustion in air”, Fizika Goreniya i Vzryva, 40:2 (2004), 33–41; Combustion, Explosion and Shock Waves, 40:2 (2004), 154–162
D. A. Yagodnikov, E. I. Gusachenko, “Effect of an external electric field on the disperse composition of condensed products of aluminum particle combustion in air”, Fizika Goreniya i Vzryva, 38:4 (2002), 80–86; Combustion, Explosion and Shock Waves, 38:4 (2002), 449–455
D. A. Yagodnikov, A. N. Bobrov, “Mathematical combustion model of a two–component gas suspension including a powder combustible and a powder oxidizer”, Fizika Goreniya i Vzryva, 37:3 (2001), 25–32; Combustion, Explosion and Shock Waves, 37:3 (2001), 267–273
D. A. Yagodnikov, “Investigation of the effect of electric field on the characteristics of heat transfer
in a combustion chamber with a porous cooling flow train”, TVT, 39:5 (2001), 788–793; High Temperature, 39:5 (2001), 733–738
D. A. Yagodnikov, A. V. Voronetskii, “Effect of the external electric field on the combustion of a suspension of aluminum particles in air”, Fizika Goreniya i Vzryva, 34:6 (1998), 23–28; Combustion, Explosion and Shock Waves, 34:6 (1998), 621–626
D. A. Yagodnikov, “Effect of an electric field on the stabilization of a turbulent propane–air flame”, Fizika Goreniya i Vzryva, 34:1 (1998), 20–24; Combustion, Explosion and Shock Waves, 34:1 (1998), 16–19
D. A. Yagodnikov, A. V. Voronetskii, “Experimental and theoretical study of the ignition and combustion of an aerosol of encapsulated aluminum particles”, Fizika Goreniya i Vzryva, 33:1 (1997), 60–68; Combustion, Explosion and Shock Waves, 33:1 (1997), 49–55
D. A. Yagodnikov, “Statistical model of flame-front propagation in a boron-air mixture”, Fizika Goreniya i Vzryva, 32:6 (1996), 29–46; Combustion, Explosion and Shock Waves, 32:6 (1996), 623–636
D. A. Yagodnikov, A. V. Voronetskii, V. I. Lapitskii, “Flame propagation through an aluminum aerosuspension at reduced pressure”, Fizika Goreniya i Vzryva, 31:5 (1995), 23–31; Combustion, Explosion and Shock Waves, 31:5 (1995), 524–531
30.
D. A. Yagodnikov, A. V. Voronetskii, N. M. Pushkin, “Electrification of nozzle in a liquid rocket engine”, Fizika Goreniya i Vzryva, 31:4 (1995), 54–58; Combustion, Explosion and Shock Waves, 31:4 (1995), 450–454
D. A. Yagodnikov, A. V. Voronetskii, “Stabilization features for a propane-air flame with application of longitudinal and transverse electric fields”, Fizika Goreniya i Vzryva, 31:1 (1995), 40–45; Combustion, Explosion and Shock Waves, 31:1 (1995), 37–41
D. A. Yagodnikov, A. V. Voronetskii, “Effect of an external electrical field on ignition and combustion processes”, Fizika Goreniya i Vzryva, 30:3 (1994), 3–12; Combustion, Explosion and Shock Waves, 30:3 (1994), 261–268
D. A. Yagodnikov, A. V. Voronetskii, “Effect of velocity nonequilibrium on the laminar flame propagation characteristics in an air-dispersed medium”, Fizika Goreniya i Vzryva, 28:5 (1992), 38–44; Combustion, Explosion and Shock Waves, 28:5 (1992), 484–490
A. N. Bobrov, D. A. Yagodnikov, I. V. Popov, “Ignition and combustion in a two-component powder suspension in a gas”, Fizika Goreniya i Vzryva, 28:5 (1992), 3–7; Combustion, Explosion and Shock Waves, 28:5 (1992), 453–457
D. A. Yagodnikov, A. V. Voronetskii, V. M. Mal'tsev, V. A. Seleznev, “Enhancing the propagation velocity of a flame front in an aluminum aerosuspension”, Fizika Goreniya i Vzryva, 28:2 (1992), 51–54; Combustion, Explosion and Shock Waves, 28:2 (1992), 155–158
A. V. Voronetskii, D. G. Pavlov, A. V. Sukhov, D. A. Yagodnikov, “Statistical model of a two-phase reacting turbulent flow”, Fizika Goreniya i Vzryva, 25:3 (1989), 53–59; Combustion, Explosion and Shock Waves, 25:3 (1989), 311–315