Loading [MathJax]/jax/output/SVG/config.js
Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Balashchenko, Vitaly Vladimirovich

Statistics Math-Net.Ru
Total publications: 11
Scientific articles: 11

Number of views:
This page:1385
Abstract pages:4649
Full texts:1486
References:604
Associate professor
Candidate of physico-mathematical sciences (1980)
Speciality: 01.01.04 (Geometry and topology)
Birth date: 15.05.1951
E-mail: ,
Keywords: homogeneous manifolds; Lie groups; generalized symmetric spaces (homogeneous $\Phi$-spaces, in particular, $k$-symmetric spaces); geometric structures on manifolds (almost complex, almost product structures, $f$-structures, etc.); pseudo-Riemannian and almost symplectic manifolds; almost Hermitian structures; generalized Hermitian geometry; nearly Kahler manifolds and their generalizations; twistor and spinor structures on manifolds; geometric structures in physics.

Subject:

The problem of describing all canonical affinor structures of classical type (almost complex, almost product, $f$-structures) on regular $\Phi$-spaces was completely solved (jointly N.A.Stepanov). In the case of homogeneous $\Phi$-spaces of arbitrary finite order $k$ ($k$-symmetric spaces) precise computational formulae for the above structures were indicated. It was proved that all classical canonical structures on $k$-symmetric spaces are compatible with natural pseudo-Riemannian metrics. Wide classes of invariant examples for generalized Hermitian geometry were presented on the base of canonical $f$-structures on $k$-symmetric spaces. In particular, a concept of nearly K\"ahler $f$-structures was introduced. It was proved that canonical $f$-structures on naturally reductive $\Phi$-spaces of orders 4 and 5 belong to these structures. As a result, the analogy with well-known homogeneous nearly K\"ahler manifolds and 3-symmetric spaces was obtained. The problem of classifying regular $\Phi$-spaces with respect to the commutative algebra of all canonical affinor structures was solved.

Biography

Graduated from Faculty of Mathematics of the Belarusian State University in 1973 (department of geometry). Ph.D. thesis was defended in 1980. A list of my works contains about 60 titles. Since 1991 I have been a member of the Bureau of Minsk Geometric seminar at the Belarusian State University.

In 1981 I was awarded the first prize in the Competition of young scientists at the Belarusian State University.

   
Main publications:
  • Balashchenko V. V. Invariant nearly Kahler $f$-structures on homogeneous spaces // Global Differential Geometry: The Mathematical Legacy of Alfred Gray, Contemporary Mathematics, 2001, vol. 288, 263–267.

https://www.mathnet.ru/eng/person8385
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/232887

Publications in Math-Net.Ru Citations
2008
1. V. V. Balashchenko, “Invariant $f$-structures on naturally reductive homogeneous spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 4,  3–15  mathnet  mathscinet  zmath  elib; Russian Math. (Iz. VUZ), 52:4 (2008), 1–12 4
2007
2. V. V. Balashchenko, “Generalized symmetric spaces, Yu. P. Solovyov's formula, and the generalized Hermitian geometry”, Fundam. Prikl. Mat., 13:8 (2007),  43–60  mathnet  mathscinet  zmath  elib; J. Math. Sci., 159:6 (2009), 777–789  scopus 2
2004
3. V. V. Balashchenko, D. V. Vylegzhanin, “Обобщенная эрмитова геометрия на однородных $\Phi$-пространствах конечного порядка”, Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 10,  33–44  mathnet  mathscinet  zmath  elib; Russian Math. (Iz. VUZ), 48:10 (2004), 30–40 3
2001
4. V. V. Balashchenko, “Homogeneous Hermitian $f$-manifolds”, Uspekhi Mat. Nauk, 56:3(339) (2001),  159–160  mathnet  mathscinet  zmath; Russian Math. Surveys, 56:3 (2001), 575–577  isi  scopus 10
1999
5. V. V. Balashchenko, “Naturally reductive Killing $f$-manifolds”, Uspekhi Mat. Nauk, 54:3(327) (1999),  151–152  mathnet  mathscinet  zmath; Russian Math. Surveys, 54:3 (1999), 623–625  isi  scopus 7
1998
6. V. V. Balashchenko, “Canonical $f$-structures of hyperbolic type on regular $\Phi$-spaces”, Uspekhi Mat. Nauk, 53:4(322) (1998),  213–214  mathnet  mathscinet  zmath; Russian Math. Surveys, 53:4 (1998), 861–863  isi  scopus 9
1995
7. V. V. Balashchenko, S. V. Vedernikov, N. A. Stepanov, A. S. Fedenko, “The scientific heritage of Vasilii Ivanovich Vedernikov (Feb. 11, 1919–March 16, 1991)”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 8 (1995),  37–58  mathnet  mathscinet  zmath; J. Math. Sci., 74:3 (1995), 961–976
8. V. V. Balashchenko, N. A. Stepanov, “Canonical affinor structures of classical type on regular $\Phi$-spaces”, Mat. Sb., 186:11 (1995),  3–34  mathnet  mathscinet  zmath; Sb. Math., 186:11 (1995), 1551–1580  isi 20
1994
9. V. V. Balashchenko, O. V. Dashevich, “Geometry of canonical structures on homogeneous $\Phi$-spaces of order 4”, Uspekhi Mat. Nauk, 49:4(298) (1994),  153–154  mathnet  mathscinet  zmath; Russian Math. Surveys, 49:4 (1994), 149–150  isi 7
1991
10. V. V. Balashchenko, N. A. Stepanov, “Canonical affinor structures on regular $\Phi$-spaces”, Uspekhi Mat. Nauk, 46:1(277) (1991),  205–206  mathnet  mathscinet  zmath; Russian Math. Surveys, 46:1 (1991), 247–248  isi 5
1990
11. V. V. Balashchenko, Yu. D. Churbanov, “Invariant structures on homogeneous $\Phi$-spaces of order 5”, Uspekhi Mat. Nauk, 45:1(271) (1990),  169–170  mathnet  mathscinet  zmath; Russian Math. Surveys, 45:1 (1990), 195–197  isi 12

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025