Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, Number 4, Pages 3–15 (Mi ivm1246)  

This article is cited in 4 scientific papers (total in 4 papers)

Invariant $f$-structures on naturally reductive homogeneous spaces

V. V. Balashchenko

Belarusian State University, Faculty of Mathematics and Mechanics
Full-text PDF (207 kB) Citations (4)
References:
Abstract: We study invariant metric $f$-structures on naturally reductive homogeneous spaces and establish their relation to generalized Hermitian geometry. We prove a series of criteria characterizing geometric and algebraic properties of important classes of metric $f$-structures: nearly Kähler, Hermitian, Kähler, and Killing structures. It is shown that canonical $f$-structures on homogeneous $\Phi$-spaces of order $k$ (homogeneous $k$-symmetric spaces) play remarkable part in this line of investigation. In particular, we present the final results concerning canonical $f$-structures on naturally reductive homogeneous $\Phi$-spaces of order 4 and 5.
Keywords: naturally reductive space - invariant $f$-structure - generalized Hermitian geometry, homogeneous $\Phi$-space, homogeneous $k$-symmetric space, canonical $f$-structure.
Received: 17.10.2007
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, Volume 52, Issue 4, Pages 1–12
DOI: https://doi.org/10.3103/S1066369X08040014
Bibliographic databases:
UDC: 514.765
Language: Russian
Citation: V. V. Balashchenko, “Invariant $f$-structures on naturally reductive homogeneous spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 4, 3–15; Russian Math. (Iz. VUZ), 52:4 (2008), 1–12
Citation in format AMSBIB
\Bibitem{Bal08}
\by V.~V.~Balashchenko
\paper Invariant $f$-structures on naturally reductive homogeneous spaces
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2008
\issue 4
\pages 3--15
\mathnet{http://mi.mathnet.ru/ivm1246}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2445168}
\zmath{https://zbmath.org/?q=an:1186.53040}
\elib{https://elibrary.ru/item.asp?id=11028149}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2008
\vol 52
\issue 4
\pages 1--12
\crossref{https://doi.org/10.3103/S1066369X08040014}
Linking options:
  • https://www.mathnet.ru/eng/ivm1246
  • https://www.mathnet.ru/eng/ivm/y2008/i4/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:482
    Full-text PDF :101
    References:78
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024