Theory of Lie algebras and groups, theory of classical and quantum integrable systems.
Main publications:
T. Skrypnyk, “Quasigraded Lie algebras, the Kostant-Adler scheme, and integrable hierarchies”, Theoret. and Math. Phys., 142:2 (2005), 275–288
T. Skrypnyk, “Quantum integrable systems, non-skew-symmetric $r$-matrices and algebraic Bethe ansatz”, J. Math. Phys., 48:2 (2007), 023506, 14 pp.
T. Skrypnyk, “Integrable quantum spin chains, non-skew symmetric $r$-matrices and quasigraded Lie algebras.”, J. Geom. Phys., 57:1 (2006), 53–67
T. Skrypnyk, “Generalized $n$-level Jaynes–Cummings and Dicke models, classical rational $r$-matrices and algebraic Bethe ansatz”, J. Phys. A, 41:47 (2008), 475202, 21 pp.
T. Skrypnyk, “Isomonodromic deformations, generalized Knizhnik–Zamolodchikov equations and non-skew-symmetric classical $r$-matrices”, J. Math. Phys., 2010:8
papernumber 083516 (51), 24 pp.
Taras Skrypnyk, “The Generalized Lipkin–Meshkov–Glick Model and the Modified Algebraic Bethe Ansatz”, SIGMA, 18 (2022), 074, 18 pp.
2021
2.
Taras Skrypnyk, “Separation of Variables, Quasi-Trigonometric $r$-Matrices and Generalized Gaudin Models”, SIGMA, 17 (2021), 069, 21 pp.
2020
3.
Guido Magnano, Taras Skrypnyk, “New Separation of Variables for the Classical XXX and XXZ Heisenberg Spin Chains”, SIGMA, 16 (2020), 047, 27 pp.
2018
4.
T. V. Skrypnik, “Separation of variables in the anisotropic Shottky–Frahm model”, TMF, 196:3 (2018), 465–486; Theoret. and Math. Phys., 196:3 (2018), 1347–1365
T. V. Skrypnyk, ““Twisted” rational $r$-matrices and the algebraic Bethe ansatz:
Applications to generalized Gaudin models, Bose–Hubbard dimers, and
Jaynes–Cummings–Dicke-type models”, TMF, 189:1 (2016), 125–146; Theoret. and Math. Phys., 189:1 (2016), 1509–1527
B. A. Dubrovin, T. V. Skrypnik, “Classical double, $R$-operators, and negative flows of integrable hierarchies”, TMF, 172:1 (2012), 40–63; Theoret. and Math. Phys., 172:1 (2012), 911–931
A. M. Boyarsky, T. V. Skrypnik, “Singular orbits of the co-adjoint representation of Euclidean groups”, Uspekhi Mat. Nauk, 55:3(333) (2000), 169–170; Russian Math. Surveys, 55:3 (2000), 564–566
A. M. Boyarsky, T. V. Skrypnik, “Singular orbits of the adjoint representation of the Lie groups $\operatorname{SO}(n)$”, Uspekhi Mat. Nauk, 51:3(309) (1996), 181–182; Russian Math. Surveys, 51:3 (1996), 541–542