Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Skrypnyk, Taras Volodymyrovych

Statistics Math-Net.Ru
Total publications: 12
Scientific articles: 12
Presentations: 1

Number of views:
This page:3114
Abstract pages:3539
Full texts:1332
References:537
Senior Researcher
Candidate of physico-mathematical sciences
E-mail:
Keywords: infinite-dimensional Lie algebras, integrable hamiltonian systems.

Subject:

Theory of Lie algebras and groups, theory of classical and quantum integrable systems.

   
Main publications:
  1. T. Skrypnyk, “Quasigraded Lie algebras, the Kostant-Adler scheme, and integrable hierarchies”, Theoret. and Math. Phys., 142:2 (2005), 275–288
  2. T. Skrypnyk, “Quantum integrable systems, non-skew-symmetric $r$-matrices and algebraic Bethe ansatz”, J. Math. Phys., 48:2 (2007), 023506, 14 pp.
  3. T. Skrypnyk, “Integrable quantum spin chains, non-skew symmetric $r$-matrices and quasigraded Lie algebras.”, J. Geom. Phys., 57:1 (2006), 53–67
  4. T. Skrypnyk, “Generalized $n$-level Jaynes–Cummings and Dicke models, classical rational $r$-matrices and algebraic Bethe ansatz”, J. Phys. A, 41:47 (2008), 475202, 21 pp.
  5. T. Skrypnyk, “Isomonodromic deformations, generalized Knizhnik–Zamolodchikov equations and non-skew-symmetric classical $r$-matrices”, J. Math. Phys., 2010:8 papernumber 083516 (51), 24 pp.

https://www.mathnet.ru/eng/person64263
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru Citations
2022
1. Taras Skrypnyk, “The Generalized Lipkin–Meshkov–Glick Model and the Modified Algebraic Bethe Ansatz”, SIGMA, 18 (2022), 074, 18 pp.  mathnet  mathscinet
2021
2. Taras Skrypnyk, “Separation of Variables, Quasi-Trigonometric $r$-Matrices and Generalized Gaudin Models”, SIGMA, 17 (2021), 069, 21 pp.  mathnet  isi  scopus
2020
3. Guido Magnano, Taras Skrypnyk, “New Separation of Variables for the Classical XXX and XXZ Heisenberg Spin Chains”, SIGMA, 16 (2020), 047, 27 pp.  mathnet  isi  scopus
2018
4. T. V. Skrypnik, “Separation of variables in the anisotropic Shottky–Frahm model”, TMF, 196:3 (2018),  465–486  mathnet  mathscinet  elib; Theoret. and Math. Phys., 196:3 (2018), 1347–1365  isi  scopus 2
2016
5. T. V. Skrypnyk, ““Twisted” rational $r$-matrices and the algebraic Bethe ansatz: Applications to generalized Gaudin models, Bose–Hubbard dimers, and Jaynes–Cummings–Dicke-type models”, TMF, 189:1 (2016),  125–146  mathnet  mathscinet  elib; Theoret. and Math. Phys., 189:1 (2016), 1509–1527  isi  scopus 6
2012
6. B. A. Dubrovin, T. V. Skrypnik, “Classical double, $R$-operators, and negative flows of integrable hierarchies”, TMF, 172:1 (2012),  40–63  mathnet  mathscinet  elib; Theoret. and Math. Phys., 172:1 (2012), 911–931  isi  elib  scopus 2
2008
7. Taras V. Skrypnik, “Classical $R$-Operators and Integrable Generalizations of Thirring Equations”, SIGMA, 4 (2008), 011, 19 pp.  mathnet  mathscinet  zmath  isi  scopus 5
8. T. V. Skrypnik, “Dual $R$-matrix integrability”, TMF, 155:1 (2008),  147–160  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 155:1 (2008), 633–645  isi  scopus 7
2006
9. Taras V. Skrypnyk, “Quasigraded Lie Algebras and Modified Toda Field Equations”, SIGMA, 2 (2006), 043, 14 pp.  mathnet  mathscinet  zmath  isi  scopus 5
2005
10. T. V. Skrypnik, “Quasigraded lie algebras, Kostant–Adler scheme, and integrable hierarchies”, TMF, 142:2 (2005),  329–345  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 142:2 (2005), 275–288  isi 10
2000
11. A. M. Boyarsky, T. V. Skrypnik, “Singular orbits of the co-adjoint representation of Euclidean groups”, Uspekhi Mat. Nauk, 55:3(333) (2000),  169–170  mathnet  mathscinet  zmath; Russian Math. Surveys, 55:3 (2000), 564–566  isi 4
1996
12. A. M. Boyarsky, T. V. Skrypnik, “Singular orbits of the adjoint representation of the Lie groups $\operatorname{SO}(n)$”, Uspekhi Mat. Nauk, 51:3(309) (1996),  181–182  mathnet  mathscinet  zmath; Russian Math. Surveys, 51:3 (1996), 541–542  isi  scopus 2

Presentations in Math-Net.Ru
1. Asymmetric variable separation for the Clebsch model
T. V. Skrypnyk
Cohomological geometry of differential equations
April 28, 2021 19:20   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024