Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 155, Number 1, Pages 147–160
DOI: https://doi.org/10.4213/tmf6200
(Mi tmf6200)
 

This article is cited in 7 scientific papers (total in 7 papers)

Dual $R$-matrix integrability

T. V. Skrypnik

N. N. Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine
Full-text PDF (416 kB) Citations (7)
References:
Abstract: Using the $R$-operator on a Lie algebra $\mathfrak{g}$ satisfying the modified classical Yang–Baxter equation, we define two sets of functions that mutually commute with respect to the initial Lie–Poisson bracket on $\mathfrak{g}^*$. We consider examples of the Lie algebras $\mathfrak{g}$ with the Kostant–Adler–Symes and triangular decompositions, their $R$-operators, and the corresponding two sets of mutually commuting functions in detail. We answer the question for which $R$-operators the constructed sets of functions also commute with respect to the $R$-bracket. We briefly discuss the Euler–Arnold-type integrable equations for which the constructed commutative functions constitute the algebra of first integrals.
Keywords: Lie algebra, classical $R$-matrix, classical integrable system.
English version:
Theoretical and Mathematical Physics, 2008, Volume 155, Issue 1, Pages 633–645
DOI: https://doi.org/10.1007/s11232-008-0053-4
Bibliographic databases:
Language: Russian
Citation: T. V. Skrypnik, “Dual $R$-matrix integrability”, TMF, 155:1 (2008), 147–160; Theoret. and Math. Phys., 155:1 (2008), 633–645
Citation in format AMSBIB
\Bibitem{Skr08}
\by T.~V.~Skrypnik
\paper Dual $R$-matrix integrability
\jour TMF
\yr 2008
\vol 155
\issue 1
\pages 147--160
\mathnet{http://mi.mathnet.ru/tmf6200}
\crossref{https://doi.org/10.4213/tmf6200}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2466487}
\zmath{https://zbmath.org/?q=an:1182.37037}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...155..633S}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 155
\issue 1
\pages 633--645
\crossref{https://doi.org/10.1007/s11232-008-0053-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255258900013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42449109996}
Linking options:
  • https://www.mathnet.ru/eng/tmf6200
  • https://doi.org/10.4213/tmf6200
  • https://www.mathnet.ru/eng/tmf/v155/i1/p147
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:424
    Full-text PDF :186
    References:67
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024