Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Ivanko, Evgenii Evgen'evich

Statistics Math-Net.Ru
Total publications: 17
Scientific articles: 16
Presentations: 3

Number of views:
This page:571
Abstract pages:4665
Full texts:1866
References:732
Head Scientist Researcher
Doctor of physico-mathematical sciences
E-mail: , ,

https://www.mathnet.ru/eng/person59461
List of publications on Google Scholar
List of publications on ZentralBlatt
https://orcid.org/0000-0003-3248-5885

Publications in Math-Net.Ru Citations
2020
1. E. E. Ivanko, S. M. Chervinsky, “Survival rate of model populations depending on the strategy of energy exchange between the organisms”, Izv. Saratov Univ. Math. Mech. Inform., 20:2 (2020),  241–256  mathnet
2019
2. A. N. Belousov, E. E. Ivanko, “Experimental research of the application of modern combinatorial optimization solvers to the accompanying manufacturing optimization problem”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:4 (2019),  599–611  mathnet
3. E. E. Ivanko, “Big-data approach in abundance estimation of non-identifiable animals with camera-traps at the spots of attraction”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019),  20–31  mathnet  elib
2018
4. E. E. Ivanko, “Experimental research on the welfare in a closed production network”, Izv. IMI UdGU, 52 (2018),  33–46  mathnet  elib 1
2017
5. E. E. Ivanko, “Iterative equitable partition of graph as a model of constant structure discrete time closed semantic system”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:4 (2017),  26–34  mathnet  isi  elib 1
2016
6. E. E. Ivanko, “Two-level optimization of sensors reposition”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:3 (2016),  130–136  mathnet  elib
2014
7. E. E. Ivanko, “Adaptive stability in combinatorial optimization problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  100–108  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 79–87  isi  scopus 1
2013
8. E. E. Ivanko, “Dynamic programming in a problem of rearranging single-type objects”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013),  125–130  mathnet  mathscinet  elib 1
9. E. E. Ivanko, “Truncated dynamic programming method in a closed traveling salesman problem with symmetric value function”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013),  121–129  mathnet  mathscinet  elib
2012
10. E. E. Ivanko, “A stability criterion for optimal solutions of a minimax problem about a partition into an arbitrary number of subsets under varying cardinality of the initial set”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  180–194  mathnet  elib 1
2011
11. E. E. Ivanko, “Method of scaling in approximate solution of the traveling salesman problem”, Avtomat. i Telemekh., 2011, no. 12,  115–129  mathnet  mathscinet  zmath; Autom. Remote Control, 72:12 (2011), 2527–2540  isi  scopus 2
12. A. M. Grigoriev, E. E. Ivanko, A. G. Chentsov, “Dynamic programming in a generalized courier problem with inner tasks: elements of a parallel structure”, Model. Anal. Inform. Sist., 18:3 (2011),  101–124  mathnet 8
13. E. E. Ivanko, “Sufficient stability conditions in the traveling salesman problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011),  155–168  mathnet  elib 2
14. E. E. Ivanko, “Criterion of the stability of optimal route in the travelling salesman problem in case of a single vertex addition”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 1,  58–66  mathnet 3
2010
15. E. E. Ivanko, “Sufficient conditions of the stability of optimal route in the Travelling Salesman Problem in cases of a single vertex addition or substraction”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 1,  48–57  mathnet 4
2008
16. E. E. Ivanko, “Exact approximation of average subword complexity of finite random words over finite alphabet”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008),  185–189  mathnet  elib 2

2013
17. E. E. Ivanko, “Dynamic Programming Method in Bottleneck Tasks Distribution Problem with Equal Agents”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:1 (2013),  124–133  mathnet

Presentations in Math-Net.Ru
1. Camera Trap TSPs
E. E. Ivanko, Ya. V. Salii
Seminar of Control System Department
January 21, 2016 12:00
2. Adaptive stability as an instrument of preference among optimal solutions of combinatorial optimization problem
E. E. Ivanko
Seminar for Optimization Laboratory
November 7, 2014 11:00
3. Some optimization problems arising in bioilogy
E. E. Ivanko
Seminar of Control System Department
March 27, 2014

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024