|
|
Publications in Math-Net.Ru |
Citations |
|
2020 |
1. |
E. E. Ivanko, S. M. Chervinsky, “Survival rate of model populations depending on the strategy of energy exchange between the organisms”, Izv. Saratov Univ. Math. Mech. Inform., 20:2 (2020), 241–256 |
|
2019 |
2. |
A. N. Belousov, E. E. Ivanko, “Experimental research of the application of modern combinatorial optimization solvers to the accompanying manufacturing optimization problem”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:4 (2019), 599–611 |
3. |
E. E. Ivanko, “Big-data approach in abundance estimation of non-identifiable animals with camera-traps at the spots of attraction”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019), 20–31 |
|
2018 |
4. |
E. E. Ivanko, “Experimental research on the welfare in a closed production network”, Izv. IMI UdGU, 52 (2018), 33–46 |
1
|
|
2017 |
5. |
E. E. Ivanko, “Iterative equitable partition of graph as a model of constant structure discrete time closed semantic system”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:4 (2017), 26–34 |
1
|
|
2016 |
6. |
E. E. Ivanko, “Two-level optimization of sensors reposition”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:3 (2016), 130–136 |
|
2014 |
7. |
E. E. Ivanko, “Adaptive stability in combinatorial optimization problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014), 100–108 ; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 79–87 |
1
|
|
2013 |
8. |
E. E. Ivanko, “Dynamic programming in a problem of rearranging single-type objects”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013), 125–130 |
1
|
9. |
E. E. Ivanko, “Truncated dynamic programming method in a closed traveling salesman problem with symmetric value function”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013), 121–129 |
|
2012 |
10. |
E. E. Ivanko, “A stability criterion for optimal solutions of a minimax problem about a partition into an arbitrary number of subsets under varying cardinality of the initial set”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012), 180–194 |
1
|
|
2011 |
11. |
E. E. Ivanko, “Method of scaling in approximate solution of the traveling salesman problem”, Avtomat. i Telemekh., 2011, no. 12, 115–129 ; Autom. Remote Control, 72:12 (2011), 2527–2540 |
2
|
12. |
A. M. Grigoriev, E. E. Ivanko, A. G. Chentsov, “Dynamic programming in a generalized courier problem with inner tasks: elements of a parallel structure”, Model. Anal. Inform. Sist., 18:3 (2011), 101–124 |
8
|
13. |
E. E. Ivanko, “Sufficient stability conditions in the traveling salesman problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011), 155–168 |
2
|
14. |
E. E. Ivanko, “Criterion of the stability of optimal route in the travelling salesman problem in case of a single vertex addition”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 1, 58–66 |
3
|
|
2010 |
15. |
E. E. Ivanko, “Sufficient conditions of the stability of optimal route in the Travelling Salesman Problem in cases of a single vertex addition or substraction”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 1, 48–57 |
4
|
|
2008 |
16. |
E. E. Ivanko, “Exact approximation of average subword complexity of finite random words over finite alphabet”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008), 185–189 |
2
|
|
|
|
2013 |
17. |
E. E. Ivanko, “Dynamic Programming Method in Bottleneck Tasks Distribution Problem with Equal Agents”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:1 (2013), 124–133 |
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|