Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 1, Pages 100–108 (Mi timm1033)  

This article is cited in 1 scientific paper (total in 1 paper)

Adaptive stability in combinatorial optimization problems

E. E. Ivanko

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (165 kB) Citations (1)
References:
Abstract: We consider a general approach to the construction of necessary, sufficient, and necessary and sufficient conditions that allow to “adapt” a known optimal solution of an abstract combinatorial problem with a certain structure to a change in the initial data set for a fixed cost function “easily” from the combinatorial point of view. We call this approach adaptive stability. Apparently, it is the first time that the approach is described for an abstract problem in a rigorous mathematical formalization.
Keywords: stability, combinatorial optimization problem, adaptation of solutions, disturbance of the initial data set.
Received: 30.09.2013
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, Volume 288, Issue 1, Pages 79–87
DOI: https://doi.org/10.1134/S0081543815020091
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: E. E. Ivanko, “Adaptive stability in combinatorial optimization problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 1, 2014, 100–108; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 79–87
Citation in format AMSBIB
\Bibitem{Iva14}
\by E.~E.~Ivanko
\paper Adaptive stability in combinatorial optimization problems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 1
\pages 100--108
\mathnet{http://mi.mathnet.ru/timm1033}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364195}
\elib{https://elibrary.ru/item.asp?id=21258486}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 288
\issue , suppl. 1
\pages 79--87
\crossref{https://doi.org/10.1134/S0081543815020091}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352991400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84958248946}
Linking options:
  • https://www.mathnet.ru/eng/timm1033
  • https://www.mathnet.ru/eng/timm/v20/i1/p100
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025