Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Yun, Veta Fedorovna

Candidate of physico-mathematical sciences
E-mail: ,

https://www.mathnet.ru/eng/person58614
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/888208
https://orcid.org/0000-0002-4871-6281

Publications in Math-Net.Ru Citations
2024
1. L. L. Maksimova, V. F. Yun, “Craig's interpolation property in pretabular logics”, Sibirsk. Mat. Zh., 65:2 (2024),  349–357  mathnet
2023
2. L. L. Maksimova, V. F. Yun, “Pretabularity and Craig’s interpolation property”, Algebra Logika, 62:3 (2023),  415–423  mathnet
3. L. L. Maksimova, V. F. Yun, “Pretabularity and Craig's interpolation problem over the minimal logic”, Sib. Èlektron. Mat. Izv., 20:1 (2023),  245–250  mathnet 2
2022
4. L. L. Maksimova, V. F. Yun, “Algorithms for recognizing restricted interpolation over the modal logic S4”, Sibirsk. Mat. Zh., 63:2 (2022),  344–359  mathnet; Siberian Math. J., 63:2 (2022), 286–298
2021
5. L. L. Maksimova, V. F. Yun, “Hybrid extensions of the minimal logic”, Sibirsk. Mat. Zh., 62:5 (2021),  1084–1090  mathnet  elib; Siberian Math. J., 62:5 (2021), 876–881  isi  scopus
2020
6. L. L. Maksimova, V. F. Yun, “Perceptibility in pre-Heyting logics”, Sib. Èlektron. Mat. Izv., 17 (2020),  1064–1072  mathnet  isi
2019
7. L. L. Maksimova, V. F. Yun, “The interpolation problem in finite-layered pre-Heyting logics”, Algebra Logika, 58:2 (2019),  210–228  mathnet; Algebra and Logic, 58:2 (2019), 144–157  isi  scopus 2
8. L. L. Maksimova, V. F. Yun, “Recognizability in pre-Heyting and well-composed logics”, Sib. Èlektron. Mat. Izv., 16 (2019),  427–434  mathnet 2
2018
9. L. L. Maksimova, V. F. Yun, “Strong computability of slices over the logic $\mathrm{GL}$”, Sib. Èlektron. Mat. Izv., 15 (2018),  35–47  mathnet 1
10. L. L. Maksimova, V. F. Yun, “Extensions of the minimal logic and the interpolation problem”, Sibirsk. Mat. Zh., 59:4 (2018),  863–878  mathnet  elib; Siberian Math. J., 59:4 (2018), 681–693  isi  scopus 4
11. V. F. Yun, “Recognizability of all WIP-minimal logics”, Sibirsk. Mat. Zh., 59:1 (2018),  225–237  mathnet  elib; Siberian Math. J., 59:1 (2018), 179–188  isi  scopus 1
2017
12. L. L. Maksimova, V. F. Yun, “Strong decidability and strong recognizability”, Algebra Logika, 56:5 (2017),  559–581  mathnet; Algebra and Logic, 56:5 (2017), 370–385  isi  scopus 8
13. L. L. Maksimova, V. F. Yun, “Slices and levels of extensions of the minimal logic”, Sibirsk. Mat. Zh., 58:6 (2017),  1341–1353  mathnet  elib; Siberian Math. J., 58:6 (2017), 1042–1051  isi  scopus 2
2016
14. L. L. Maksimova, V. F. Yun, “Layers over minimal logic”, Algebra Logika, 55:4 (2016),  449–464  mathnet; Algebra and Logic, 55:4 (2016), 295–305  isi  scopus 8
15. L. L. Maksimova, V. F. Yun, “Calculi over minimal logic and nonembeddability of algebras”, Sib. Èlektron. Mat. Izv., 13 (2016),  704–715  mathnet 3
16. L. L. Maksimova, V. F. Yun, “The tabularity problem over the minimal logic”, Sibirsk. Mat. Zh., 57:6 (2016),  1320–1332  mathnet  elib; Siberian Math. J., 57:6 (2016), 1034–1043  isi  scopus 9
2015
17. L. L. Maksimova, V. F. Yun, “Recognizable logics”, Algebra Logika, 54:2 (2015),  252–274  mathnet  mathscinet; Algebra and Logic, 54:2 (2015), 167–182  isi  scopus 18
18. V. F. Yun, “Polymodal logic of the class of inductive linear time frames”, Sib. Èlektron. Mat. Izv., 12 (2015),  421–431  mathnet 1
19. L. L. Maksimova, V. F. Yun, “WIP-minimal logics and interpolation”, Sib. Èlektron. Mat. Izv., 12 (2015),  7–20  mathnet 6
20. V. F. Yun, “On the linear logic of knowledge and time with intransitive time relation”, Sibirsk. Mat. Zh., 56:3 (2015),  715–719  mathnet  mathscinet  elib; Siberian Math. J., 56:3 (2015), 565–568  isi  elib  scopus 1
21. L. L. Maksimova, V. F. Yun, “Interpolation over the minimal logic and Odintsov intervals”, Sibirsk. Mat. Zh., 56:3 (2015),  600–616  mathnet  mathscinet  elib; Siberian Math. J., 56:3 (2015), 476–489  isi  elib  scopus 3
2010
22. V. F. Yun, “The temporal logic of inductive frames with linear time”, Sib. Èlektron. Mat. Izv., 7 (2010),  445–457  mathnet 1
2009
23. V. F. Yun, “Temporal logic of linear time frames with inductions axiom”, Sib. Èlektron. Mat. Izv., 6 (2009),  312–325  mathnet  mathscinet 3

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024