Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2019, Volume 16, Pages 427–434
DOI: https://doi.org/10.33048/semi.2019.16.024
(Mi semr1066)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical logic, algebra and number theory

Recognizability in pre-Heyting and well-composed logics

L. L. Maksimovaab, V. F. Yunab

a Sobolev Institute of Mathematics, 4, pr. Koptyuga ave., Novosibirsk, 630090, Russia
b Novosibirsk State University, 2, Pirogova str., Novosibirsk, 630090, Russia
Full-text PDF (151 kB) Citations (2)
References:
Abstract: In this paper the problems of recognizability and strong recognizavility, perceptibility and strong perceptibility in extensions of the minimal Johansson logic $\mathrm{J}$ [1] are studied. These concepts were introduced in [2, 3, 4]. Although the intuitionistic logic Int is recognizable over $\mathrm{J}$ [2], the problem of its strong recognizability over $\mathrm{J}$ is not solved. Here we prove that Int is strong recognizable and strong perceptible over the minimal pre-Heyting logic Od and the minimal well-composed logic $\mathrm{JX}$. In addition, we prove the perceptibility of the formula $F$ over $\mathrm{JX}$. It is unknown whether the logic $\mathrm{J+F}$ is recognizable over $\mathrm{J}$.
Keywords: Recognizability, strong recognizability, minimal logic, pre-Heyting logic, Johansson algebra, Heyting algebra, superintuitionistic logic, calculus.
Funding agency Grant number
Siberian Branch of Russian Academy of Sciences I.1.1, проект № 0314-2019-0002
Received June 26, 2018, published March 29, 2019
Bibliographic databases:
Document Type: Article
UDC: 510.6
MSC: 03B45
Language: Russian
Citation: L. L. Maksimova, V. F. Yun, “Recognizability in pre-Heyting and well-composed logics”, Sib. Èlektron. Mat. Izv., 16 (2019), 427–434
Citation in format AMSBIB
\Bibitem{MakYun19}
\by L.~L.~Maksimova, V.~F.~Yun
\paper Recognizability in pre-Heyting and well-composed logics
\jour Sib. \`Elektron. Mat. Izv.
\yr 2019
\vol 16
\pages 427--434
\mathnet{http://mi.mathnet.ru/semr1066}
\crossref{https://doi.org/10.33048/semi.2019.16.024}
Linking options:
  • https://www.mathnet.ru/eng/semr1066
  • https://www.mathnet.ru/eng/semr/v16/p427
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:308
    Full-text PDF :133
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024