Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kushniruk, Nadegda Nikolaevna

Statistics Math-Net.Ru
Total publications: 5
Scientific articles: 5

Number of views:
This page:237
Abstract pages:2778
Full texts:746
References:338
Senior Lecturer
Candidate of physico-mathematical sciences
Speciality: 01.01.07 (Computing mathematics)
Birth date: 16.03.1984
E-mail:
Keywords: model problem whith friction.
UDC: 519.642.8, 519.853.2, 519.632, 519.626

Subject:

Variational inequalities, optimization method, numerical methods.

   
Main publications:
  1. Kushniruk N.N., “Metod Udzavy s modifitsirovannoi funktsiei Lagranzha dlya resheniya zadachi o dvizhenii zhidkosti v beskonechnoi trube s treniem na granitse”, Informatika i sistemy upravleniya, 2009, № 19, 3–14
  2. Vikhtenko E.M., Kushniruk N.N., Namm R.V., “Ob odnom podkhode k resheniyu polukoertsitivnoi zadachi s treniem”, Matematicheskoe programmirovanie. Trudy XIV Baikalskoi mezhdunarodnoi shkoly-seminara, ISEM SO RAN, 2008, 280–285
  3. Kushniruk N.N., Namm R.V., “Ob odnom podkhode k resheniyu polukoertsitivnoi modelnoi zadachi s treniem”, Dalnevostochnyi matematicheskii zhurnal, 8:2 (2008), 171–179

https://www.mathnet.ru/eng/person49648
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru Citations
2012
1. N. N. Maksimova (Kushniruk), R. V. Namm, “Finite-element solution of a model mechanical problem with friction based on a smoothing Lagrange multiplier method”, Zh. Vychisl. Mat. Mat. Fiz., 52:1 (2012),  24–34  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 52:1 (2012), 20–30  isi  elib  scopus 4
2011
2. N. N. Kushniruk, R. V. Namm, “Iterative proximal regularization of a modified Lagrangian functional for solving a semicoercive model problem with friction”, Sib. Zh. Vychisl. Mat., 14:4 (2011),  381–396  mathnet; Num. Anal. Appl., 4:4 (2011), 319–332  scopus 6
3. N. N. Kushniruk, R. V. Namm, A. S. Tkachenko, “Stable smoothing method for solving a model mechanical problem with friction”, Zh. Vychisl. Mat. Mat. Fiz., 51:6 (2011),  1032–1042  mathnet  mathscinet; Comput. Math. Math. Phys., 51:6 (2011), 965–974  isi  scopus 3
2009
4. N. N. Kushniruk, R. V. Namm, “The Lagrange multipliers method for solving a semicoercive model problem with friction”, Sib. Zh. Vychisl. Mat., 12:4 (2009),  409–420  mathnet; Num. Anal. Appl., 2:4 (2009), 330–340  scopus 9
2008
5. N. N. Kushniruk, R. V. Namm, “On a solution of semicoercive model problem with friction”, Dal'nevost. Mat. Zh., 8:2 (2008),  171–179  mathnet 1

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024