|
|
Publications in Math-Net.Ru |
Citations |
|
2017 |
1. |
E. M. Vikhtenko, G. S. Woo, R. V. Namm, “Modified dual scheme for finite-dimensional and infinite-dimensional convex optimization problems”, Dal'nevost. Mat. Zh., 17:2 (2017), 158–169 |
1
|
|
2016 |
2. |
E. M. Vikhtenko, R. V. Namm, M. V. Chervyakova, “Duality method for solving model crack problem”, Dal'nevost. Mat. Zh., 16:2 (2016), 137–146 |
3. |
E. M. Vikhtenko, R. V. Namm, “On the dual method for a model problem with a crack”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016), 36–43 |
5
|
|
2014 |
4. |
E. M. Vikhtenko, G. S. Woo, R. V. Namm, “The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals”, Dal'nevost. Mat. Zh., 14:1 (2014), 6–17 |
7
|
5. |
E. M. Vikhtenko, N. N. Maksimova, R. V. Namm, “A sensitivity functionals in variational inequalities of mechanics and their application to duality schemes”, Sib. Zh. Vychisl. Mat., 17:1 (2014), 43–52 ; Num. Anal. Appl., 7:1 (2014), 36–44 |
11
|
6. |
E. M. Vikhtenko, G. Woo, R. V. Namm, “Sensitivity functionals in contact problems of elasticity theory”, Zh. Vychisl. Mat. Mat. Fiz., 54:7 (2014), 1218–1228 ; Comput. Math. Math. Phys., 54:7 (2014), 1190–1200 |
12
|
|
2012 |
7. |
E. M. Vikhtenko, N. N. Maksimova, R. V. Namm, “Modified Lagrange functionals to solve the variational and quasivariational inequalities of mechanics”, Avtomat. i Telemekh., 2012, no. 4, 3–17 ; Autom. Remote Control, 73:4 (2012), 605–615 |
5
|
8. |
E. M. Vikhtenko, “On the method of searching a saddle point of modified Lagrangian functional for elasticity problem with friction”, Dal'nevost. Mat. Zh., 12:1 (2012), 3–11 |
2
|
|
2010 |
9. |
È. M. Vikhtenko, G. Vu, R. V. Namm, “On the convergence of the Uzawa method with a modified Lagrange functional for variational inequalities in mechanics”, Zh. Vychisl. Mat. Mat. Fiz., 50:8 (2010), 1357–1366 ; Comput. Math. Math. Phys., 50:8 (2010), 1289–1298 |
6
|
|
2009 |
10. |
E. M. Vikhtenko, R. V. Namm, “On a characteristic properties of modified Lagrangian functional in a problem of elasticity with a given friction”, Dal'nevost. Mat. Zh., 9:1-2 (2009), 38–47 |
4
|
11. |
H. Kim, R. V. Namm, E. M. Vikhtenko, G. Woo, “Regularization in the Mosolov and Myasnikov problem with boundary friction”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 6, 10–19 ; Russian Math. (Iz. VUZ), 53:6 (2009), 7–14 |
1
|
|
2008 |
12. |
E. M. Vikhtenko, R. V. Namm, “Iterative proximal regularization of the modified Lagrangian functional for solving the quasi-variational Signorini inequality”, Zh. Vychisl. Mat. Mat. Fiz., 48:9 (2008), 1571–1579 ; Comput. Math. Math. Phys., 48:9 (2008), 1536–1544 |
8
|
|
2007 |
13. |
E. M. Vikhtenko, R. V. Namm, “Duality scheme for solving the semicoercive signorini problem with friction”, Zh. Vychisl. Mat. Mat. Fiz., 47:12 (2007), 2023–2036 ; Comput. Math. Math. Phys., 47:12 (2007), 1938–1951 |
26
|
|
2004 |
14. |
E. M. Vikhtenko, R. V. Namm, “A method for solving semi-coercive variational inequalities, based on the method of iterative proximal regularization”, Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 1, 31–35 ; Russian Math. (Iz. VUZ), 48:1 (2004), 28–32 |
8
|
|
1998 |
15. |
E. M. Vikhtenko, “An iterative method for solving the first boundary value problem for second-order quasilinear parabolic equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 1, 20–25 ; Russian Math. (Iz. VUZ), 42:1 (1998), 18–23 |
|
Organisations |
|
|
|
|